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Phase Diagram of the Random Heisenberg Antiferromagnetic Spin-1 Chain
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We present a new perturbative real space renormalization group (RG) to study random quantum spin
chains and other one-dimensional disordered quantum systems. The method overcomes problems of the
original approach which fails for quantum random chains with spins larger than S � 1=2. Since it
works even for weak disorder, we are able to obtain the zero temperature phase diagram of the random
antiferromagnetic Heisenberg spin-1 chain as a function of disorder. We find a random singlet phase for
strong disorder. As the disorder decreases, the system shows a crossover from a Griffiths to a disordered
Haldane phase.
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FIG. 1. The phase diagram of the spin-1 random Heisenberg
antiferromagnetic chain. Disorder is inversely related to the gap
respect to the effects of disorder. For gapped biquadratic G of the initial rectangular distribution and GG � 0:45.
The study of the effects of disorder on quantum sys-
tems is an actual and important area of research [1–17].
Intensive work in the past decades has deepened our
understanding of the phase transitions which occur in
pure quantum systems [18]. Now the main effort is con-
centrated on understanding the role of randomness in
these transitions. This gives rise to new and interesting
phenomena, such as the existence of Griffiths phases
[2,7]. In this connection, random quantum spin chains
have been intensively investigated. In the pure case, their
behavior is well known [19]. Also for spin-1=2 quantum
antiferromagnetic chains a perturbative approach devel-
oped by Ma, Dasgupta, and Hu (MDH) [1] and extended
by Fisher [2] allows one to obtain results which are
essentially exact for this system. The picture which
emerges for these chains is described by a random singlet
phase (RSP) where spins are coupled in pairs over arbi-
trary distances. In the renormalization group approach,
this random singlet phase is governed by an infinite
randomness fixed point [2,7,17]. A straightforward exten-
sion of the MDH method for biquadratic spin-1 chains has
shown that in the Heisenberg case the perturbative RG
approach may fail even for the case of strong disorder [3].
The reason is that, in the elimination process of strong
interactions, in which consists the MDH approach, inter-
actions stronger than those eliminated are generated. This
failure is better demonstrated when the method is ex-
tended to finite temperatures where it gives rise to non-
physical behavior such as negative specific heat and so on
[6]. Several proposals have been put forward to extend the
MDH method for quantum spin chains, with S > 1=2
[11–14], without undisputed success. The challenge in
the case of quantum integer spin chains is particularly
exciting as it deals with the question of the fate of the
Haldane phase [20] in the presence of disorder. The ex-
istence of a gap in the excitation spectrum is not sufficient
to guarantee the robustness of pure chain behavior with
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chains, any amount of disorder drives the system to a
random singlet phase or infinite randomness fixed point
[3]. If this is not the case for Haldane chains, there may be
a unique property of integer chains which confers to
them a special stability with respect to the introduction
of disorder. In fact, Hida [16] using a density matrix
renormalization group approach has not found any evi-
dence for a RSP for spin-1 chains even in the presence of
strong disorder, although this is still a matter of contro-
versy [12,13,21].

In this Letter, we propose a new approach to the spin-1
Heisenberg antiferromagnetic chain which is an improve-
ment of the traditional MDH perturbative renormaliza-
tion group method. Our procedure avoids generation of
interactions larger than those eliminated even for weak
disorder. This provides a unique opportunity to obtain the
phase diagram of the quantum, spin-1 Heisenberg chain
as a function of disorder which is shown in Fig. 1. We
consider here rectangular distributions of antiferromag-
netic interactions P�J� � �1=�1�G����1� J���J�G�.
The gap G is a measure of the amount of disorder being
inversely related to it .We find for strong disorderG � 0, a
random singlet phase. As G increases, i.e., disorder de-
creases, there is a Griffiths phase characterized by expo-
nents which depend on the distance to the infinite
randomness fixed point at G � 0. This Griffiths phase
extends up to G � 0:45 and for weak disorder there is a
disordered Haldane phase.
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FIG. 2. The two elimination procedures as described in the
text (J1 > J2).
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FIG. 3. Evolution of the cutoff of the random chain, as a
function of the fraction of eliminated spins, under the two
renormalization procedures discussed in the text. Note that the
naive MDH process generates interaction larger than those
eliminated, even for strong disorder (G � 0). This never occurs
in the new procedure used here.
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FIG. 4. Exponent 	 of the fixed point, power law distribu-
tion, Eq. (2), as a function of the cutoff � in the low energy
limit.
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The MDH method consists in finding the strongest
interaction (�) between pairs of spins in the chain [see
Fig. 2(a)] and treating the coupling of this pair with their
neighbors (J1 and J2) as a perturbation. For a chain of
spins S � 1, after elimination of the strongest coupled
pair, the new coupling between their neighbors is given by

J0 �
4

3

J1J2
�

: (1)

The factor, �4=3� > 1, in this equation is the source of
the failure of perturbation theory. Let us assume, for
example, that the largest of the neighboring couplings
(J1, J2) to the strongest interaction � in the chain is J1. If
J1 > �3=4��, then the new effective interaction J0 is
necessarily larger than one of those eliminated, in this
case, than the weaker one J2.

Our generalization of the MDH method consists in
either of the following procedures (Fig. 2). If the largest
neighboring interaction to �, J1 < �3=4��, then we
eliminate the strongest coupled pair, obtaining an effec-
tive interaction between the neighbors to this pair which
is given by Eq. (1). This effective interaction is always
smaller than those eliminated.

Now suppose J1 > �3=4�� (J1 > J2). In this case, we
consider the trio of spins S � 1 coupled by the two
strongest interactions of the trio, J1 and �, and solve it
exactly [see Fig. 2(b)]. The ground state of this trio of
spins S � 1 is a degenerate triplet and it will be substi-
tuted by an effective spin-1 interacting with its neighbors
through new renormalized interactions obtained by de-
generate perturbation theory. This procedure which im-
plies diagonalizing the 27	 27 matrix of the trio is
carried out analytically. This is important for obtaining
results on large chains and to deal with the large numbers
of initial configurations that we use. These procedures
guarantee that we always comply with the criterion of
validity of perturbation theory and never an interaction
larger than those eliminated is generated, as shown in
Fig. 3. Notice from this figure that even for the strong
disorder case, with no gap in the original distribution of
exchange couplings, the simple MDH procedure fails.

We first consider the strong disorder case G � 0. This
corresponds to the quantum critical point of the phase
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diagram where the system flows to an infinite randomness
fixed point. This becomes clear when we consider the
fixed point form of the probability distribution of inter-
actions. This is given by

P�J� �
	
�

�
�

J

�
1�	

: (2)

The exponent 	 as a function of the cutoff � is shown in
Fig. 4. It varies as

	 �
�1

ln�
: (3)

This behavior characterizes the strong disorder case, G �
0, as a random singlet phase [2].

Further evidence for a random singlet phase atG � 0 is
obtained by considering the fraction of remaining active
spins 
 as a function of the energy scale set by the cutoff
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FIG. 5. The density of active spins as a function of the cutoff
in the low energy limit. The inset shows the expected behavior
for a random singlet phase with the exponent  � 1=2.
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FIG. 6. (a) Probability distribution of the first gap at the
transition point, G � 0. The distribution become broader and
broader with L, which signals infinite randomness behavior.
(b) Scaling plot for the gap distributions. The collapse of the
curves is obtained for  � 1=2 as expected for a random
singlet phase.

0 20 40 60
−Log10(∆)

−5

−4

−3

−2

L
o

g
10

[P
[−

L
o

g
10

(∆
)]

] L=5000
L=8000
L=9000

a)

0 1 2 3 4 5 6
−Log10(∆)

−5

−4

−3

−2

L
o

g
10

[P
(−

L
o

g
10

(∆
)]

] L=5000
L=8000
L=9000

b)

1 2 3 4 5
−Log10(∆)

−5

−4

−3

−2

L
o

g
10

[P
[−

L
o

g
10

(∆
)]

] L=5000
L=8000
L=9000

c)

FIG. 7. Probability distributions of the first gap obtained
from initial rectangular distributions of couplings with a gap
G and different systems sizes L. For clarity, not all values of L
are shown. The solid lines represent best fits to the form
log10�P��log10��� � AL �

1
ZL
log10�. (a) G � 0:1, Z5000 �

8:69, Z6000 � 8:70, Z7000 � 10:45, Z8000 � 10:85, and Z9000 �
10:87. (b) G � 0:45, Z5000 � 0:79, Z6000 � 0:81, Z7000 � 0:96,
Z8000 � 1:0, and Z9000 � 1:01. (c) G � 0:5, Z5000 � 0:55,
Z6000 � 0:58, Z7000 � 0:63, Z8000 � 0:67, and Z9000 � 0:68.
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� [2]. This relation introduces a new exponent  which is
defined by


 �
1

L
�

1

j ln�j1= 
: (4)

It also establishes the connection between the character-
istic length L and the energy scale � for the case of
logarithmic scaling. This is an extension of the usual
definition of a dynamic exponent (��1 / 
 / Lz). In
Fig. 5 we show the density 
 � 1=L as a function of the
cutoff. From this expression we extract the exponent  
which takes the value  � 1=2 characteristic of the ran-
dom singlet phase [2].

Finally, we calculate the distribution of first gaps at
G � 0 [7,8]. This is obtained starting from a given con-
figuration of random interactions for a chain of size L and
eliminating the spins, as described above, until a single
pair remains. The interaction between these remaining
spins yields the first gap � for excitation. Implementing
this procedure for a large number of initial random con-
figurations for chains of different sizes L yields the dis-
tributions PL�log�� shown in Fig. 6. We considered over
104 initial configurations to obtain the gap distributions.
The widths of these distributions increase without limit
as the sizes L of the chains increase, as expected for an
infinite randomness fixed point.

According to the scaling form relating energy and
length, Eq. (4), we expect that the distribution
P�� log�=L � will present a universal behavior, inde-
pendent of the size L of the chains when plotted versus
the variable � log�=L . This is indeed the case forG � 0
as shown in Fig. 6 for the RSP exponent  � 1=2.

We now decrease disorder, increasing the gap in the
exchange distribution. In Fig. 7 we show the first gap
distributions for different degrees of disorder as charac-
terized by the gaps G in the initial distribution of inter-
actions. In all cases that we have investigated withG � 0,
we find that the first gap distributions saturate at low
energies in a form described by the expression,P�log�� �
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�1=Z for � ! 0. The dynamic exponent Z becomes in-
dependent of L for L sufficiently large. We have to con-
sider large chains in order to observe this effect. We find
Z1 � 10:87, Z1 � 1:01, and Z1 � 0:68 for G � 0:1, G �
0:45, and G � 0:5, respectively. From these values of the
dynamic exponent, we can deduce the existence of a
Griffiths phase extending up to GG � 0:45 where the
dynamic exponent reaches the value Z � 1. For values
of the gap G > GG, i.e., small disorder, the dynamic
exponent Z < 1. The distribution of first gap for excita-
tions, from which low temperature thermodynamic prop-
erties can be deduced, implies that Z > 1 is required to
obtain a singular behavior for these quantities with de-
creasing temperature. Consequently, at GG there is a
significant change in the nature of the thermodynamic
behavior of the system. The phase for G > GG is a dis-
ordered Haldane phase with a pseudogap in the excitation
spectrum. The thermodynamic behavior along the phase
diagram will be explored in a future publication [22].
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We have generalized the MDH perturbative renormal-
ization group. This method was known to fail in the case
of random quantum chains with spins S > 1=2 as it
generates couplings which are larger than those elimi-
nated, signaling the breakdown of perturbation theory.
Taking into account larger clusters and treating them
exactly, we were able to circumvent this problem. For
the important case of the spin-1 random Heisenberg
antiferromagnetic chain, our elimination procedure gives
rise to interactions which are always smaller than those
eliminated, even for weak disorder. This allows us to
obtain the phase diagram of this system as a function of
disorder. We find for initial rectangular distributions with
no gap, G � 0, a random singlet phase similar to that
found in spin-1=2 chains. For finite values of the gap G,
the first gap distribution PL�log�� becomes, in the low
energy limit, independent of L for sufficiently large
chains and is characterized by a dynamic exponent Z
which depends on how far the system is from the infinite
randomness fixed point at G � 0. This Griffiths phase is
associated with a dynamic exponent Z � 1 and is limited
by the fixed point at G � 0 (where Z � 1) and by GG �
0:45, where Z attains the value Z � 1. For larger values of
the gap, i.e., small disorder, the system presents a disor-
dered Haldane phase with a pseudogap in the spectrum
for excitations.
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