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Non-Fermi-Liquid Behavior in Sr2RuO4 with Nonmagnetic Impurities
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We report that the quasi-two-dimensional Fermi-liquid behavior of the spin-triplet superconductor
Sr2RuO4 breaks down in the vicinity of the critical impurity concentration for the onset of magnetic
order induced by nonmagnetic Ti4� impurities. The non-Fermi-liquid behavior is interpreted in terms
of the two-dimensional antiferromagnetic fluctuations, which arise mainly from the nesting within one
of the Fermi-surface sheets. We argue against the main role of such magnetic fluctuations in the pairing
mechanism.
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role in the physical properties of Sr2RuO4.
At first, theoretical insight suggested that ferromag-

netic spin fluctuations may be the main mechanism of

xc � 2:5% for the magnetic ordering in Sr2Ru1�xTixO4.
Our results for resistivity and specific heat strongly sug-
gest that the non-Fermi-liquid behavior is driven by the
It has been widely recognized that physical properties
in highly correlated electron systems such as f-electron
systems and high-Tc cuprates show pronounced deviation
from the conventional Fermi-liquid behavior [1]. The
non-Fermi-liquid behavior is often observed in the vicin-
ity of a quantum critical point at which magnetic ordering
temperature is driven to zero by varying parameters such
as pressure and chemical substitution, or even in the
vicinity of a metamagnetic transition point by varying
a magnetic field [2]. In addition, unconventional super-
conductivity often emerges near such a magnetic insta-
bility point [3]. Therefore, it has become increasingly
important to study a variety of highly correlated electron
systems, especially the ones for which the Fermi-liquid
behavior as well as the origin of its breakdown can be well
understood, in order to establish generic implication of
such non-Fermi-liquid behavior.

For this purpose, layered perovskite Sr2RuO4 may be
regarded as an ideal system, because this system will
provide a detailed set of data to deepen our knowledge
of non-Fermi-liquid behavior. First, its superconductivity
[4] with the transition temperature Tc � 1:5 K is of un-
conventional pairing symmetry, most probably spin trip-
let [5]. Second, the details of the entire Fermi surfaces
have been quantitatively characterized by the quantum
oscillation measurements [6]. The Fermi surface is com-
posed of three nearly cylindrical sheets: 
 and � bands
reflecting quasi-one-dimensional character associated
with dyz and dzx orbits, and an � band with quasi-two-
dimensional character associated with the dxy orbit. On
the basis of the Fermi-surface topography, the strongly
anisotropic normal state properties are described quanti-
tatively by the framework of a quasi-two-dimensional
Fermi liquid [7]. In that study, it was revealed that the
strong correlations among the electrons play an essential
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the spin-triplet pairing in Sr2RuO4, on the basis of the
similarity to the Fermi-liquid properties of superfluid 3He
and to the ferromagnetic relative compound SrRuO3 [8].
Inelastic neutron scattering measurement, however, re-
vealed a strong incommensurate (antiferromagnetic)
fluctuation with a large Stoner factor close to 1, but no
discernible response around q � 0 [9]. The incommensu-
rate wave vector Qic � �2�=3; 2�=3; 0� is in accord with
the nesting vector within the � Fermi surface, predicted
by the band calculation [10]. Thus, the pairing mechanism
in Sr2RuO4 seems more involved than initially expected
because of the multiband effects. On the basis of the mag-
netic properties in the normal state, a number of scenarios
for the mechanism and gap structure of the spin-triplet
superconductivity in Sr2RuO4 have been proposed [11–
13]; the validity of these models is now under active
debate.

Very recently, we reported that the substitution of non-
magnetic impurity Ti4� (the electron configuration 3d0)
for Ru4� (4d4 in the low spin configuration) in Sr2RuO4

induces local moment which has Ising anisotropy with an
easy axis along the c axis [14]. The induced moment is
attributable to Ru4� spins surrounding Ti, because inter-
ruption of the d-p hybridization paths by Ti4� tends to
localize the 4d electrons in the quasi-one-dimensional
orbits. Furthermore, magnetic ordering with glassy be-
havior appears for x � 2:5% in Sr2Ru1�xTixO4. Thus,
Sr2Ru1�xTixO4 shows the rich ground states varying
from the spin-triplet superconductivity with the quasi-
two-dimensional Fermi-liquid state to the magnetic or-
dering with glassy behavior. However, the relation be-
tween the superconductivity and the magnetism still
remains unclear for Sr2Ru1�xTixO4.

In this Letter, we report the emergence of non-Fermi-
liquid behavior in the vicinity of the critical concentration
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two-dimensional antiferromagnetic fluctuations. We also
present the role of the antiferromagnetic fluctuations in
the pairing mechanism of Sr2RuO4.

A series of single-crystalline Sr2Ru1�xTixO4 with x
up to 9% were grown by a floating-zone method with
an infrared image furnace (NEC Machinery, model
SC-E15HD) [14,15]. The analyzed Ti concentrations by
electron-probe microanalysis (EPMA) are in good
agreement with the nominal concentrations within the
detection uncertainty. The in-plane resistivity �ab mea-
surements were performed by a standard four-probe dc
method between 4.2 and 300 K and by a low frequency ac
method between 0.3 and 5 K. The specific heat CP was
measured by a thermal relaxation method from 0.5 to 30 K
(Quantum Design, model PPMS).

Figure 1 shows the temperature dependence of �ab with
a small amount of x up to 0:50%. Two features in the
figure should be noted. First, Tc is rapidly suppressed with
the initial rate dTc=dx � �8 K=Ti%, reflecting the high
sensitivity to translational symmetry breaking, charac-
teristic of unconventional superconductivity [16]. No
superconducting transition is detected beyond x �
0:15%, much below the critical concentration for the
occurrence of the magnetic ordering at xc � 2:5%.
Second, a rapid enhancement of the residual resistivity
�ab0 with x, defined by the extrapolation of the low-
temperature resistivity to T � 0 K, is observed. The up-
turn of �ab below 1 K observed for x � 0:25% crystals
suggests a connection with fluctuations near the critical
disorder for disappearance of superconductivity, although
theoretical examination predicts specific temperature de-
pendence leading to reduction in �ab [17]. The Tc as a
function of �ab0 is shown in Fig. 2. The open symbols are
taken from previous studies [16], in which the Tc is sup-
pressed by the crystal defects and the aluminum con-
tamination. The present results indicate a universal trend
quantitatively consistent with the previous ones: The
superconductivity of Sr2RuO4 is completely suppressed
FIG. 1. Temperature dependence of the in-plane resistivities
in Sr2Ru1�xTixO4 with x up to 0:50%.
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at the critical resistivity of �ab0 � 1:1 ��cm. The criti-
cal value is in good agreement with the mean-free path lab
falling below the superconducting coherence length
�ab � 900 �A [16].

Figure 3 shows the temperature dependence of the
inelastic part of the in-plane resistivity ��ab 	 �ab�T� �
�ab0 with x up to 3% plotted as log���ab� vs logT. The
T-squared dependence ��ab � ATn with n � 2 satisfied
below about 30 K for x � 0 starts to break down with Ti
substitution. The exponent sharply deviates from 2 and
becomes nearly unity at xc � 2:5% between 0.3 and 2 K,
in almost one decade of temperature range. This result
strongly suggests a breakdown of the simple Fermi-liquid
behavior near the critical concentration xc. The origin
and analysis of the low-temperature behavior for x � 3%
will be described below. In the inset of Fig. 3, the x
dependence of �ab0 is displayed. The broken line repre-
sents d�ab0=dx � 4:25 ��cm=Ti% expected for the
unitarity scattering [18]. This expectation is in good
agreement with the experimental value of d�ab0=dx�
5 ��cm=Ti%. Thus, nonmagnetic impurity acts as a
strong potential scatterer in Sr2RuO4, similar to the sub-
stitution effect of nonmagnetic (Zn2�) impurity in
high-Tc cuprates [19].

Figure 4 shows the specific heat divided by temperature
CP=T for x � 0, 2.5, and 9% plotted as functions of T2.
The data for x � 0 was obtained by applying the mag-
netic field of 0.2 T along the c axis in order to suppress
the superconductivity (Tc � 1:44 K). There is no evi-
dence of magnetic field dependence of the CP=T at T �
Tc within the experimental resolution, consistent with the
previous report [20]. We can clearly see the enhancement
of the CP=T at xc � 2:5%. The enhancement cannot be
simply explained by the impurity band induced by the
FIG. 2. Superconducting transition temperature Tc as a func-
tion of the in-plane residual resistivity �ab0 for Sr2Ru1�xTixO4.
Previous results for different means of disorder (Ref. [16]) are
added. The broken line shows the Abrikosov-Gor’kov pair-
breaking function.
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FIG. 4. Specific heat divided by temperature CP=T plotted
against T2. The inset shows temperature dependence of
�CP=T � CP=T �x � 2:5%� � CP=T �x � 0� plotted as
�CP=T vs logT. The line is a guide for the eye.

FIG. 3. Temperature dependence of the inelastic part of the
in-plane resistivity ��ab 	 �ab�T� � �ab0 in Sr2Ru1�xTixO4

plotted as log���ab� vs logT. The broken lines represent
��ab � ATn with n � 1 and 2. Inset: Residual resistivity as
a function of nonmagnetic Ti concentration. The broken line
represents the unitarity limit [18].
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substitution effect, because such an effect is not observed
for x � 9%. In addition, for x � 2:5%, a logarithmic
upturn behavior, which deviates from the simple Fermi-
liquid behavior in pure Sr2RuO4, is observed as demon-
strated in the inset of Fig. 4, where �CP=T � CP=T �x �
2:5%� � CP=T �x � 0�. This logarithmic behavior is
similar to that seen in the heavy fermion systems in the
vicinity of the magnetic instability [21].

The T-x phase diagram of Sr2Ru1�xTixO4 is presented
in Fig. 5(a). Further substitution of Ti beyond the sup-
pression of the superconductivity at x� 0:15% leads to
the magnetic ordering beyond xc. Figures 5(b) and 5(c)
show the value of CP=T at 0.5 K and the power-law
exponent n of the resistivity. Estimation of n for x �
3% is not straightforward, since the localization behavior
with a logarithmic term is observed [14]. We obtained n
by fitting �ab � �ab0 � ATn � B ln�T=T0�, where T0 cor-
responds to the characteristic temperature of the local-
ization behavior, shown in Fig. 5(a). We note that the
choice of T0 barely affects the determination of n. We
can clearly see the anomaly in both n and CP=T centered
around xc.

Next, we discuss the origin of the non-Fermi-liquid
behavior in the vicinity of xc. In Sr2Ru1�xTixO4 with x �
9%, incommensurate magnetic ordering with the wave
vector Qic, which is close to the position of the inelastic
neutron scattering peak in pure Sr2RuO4 [9], is also
observed below about 25 K by the elastic neutron scat-
tering measurement, where the Stoner factor reaches 1 at
xc [22]. This result indicates that the two-dimensional
antiferromagnetic spin fluctuations at Qic become static
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by nonmagnetic Ti substitution. Moreover, the resistivity
and specific heat at xc show ��ab / Tn with n � 1 and
�CP=T / � lnT, respectively. These results are in good
agreement with the expectation of the self-consistent-
renormalization theory [23] for two-dimensional antifer-
romagnetic spin fluctuations.

Finally, we discuss the implication of the current result
for the mechanism of the spin-triplet superconductivity in
Sr2RuO4. Recently, it has been proposed that the nesting
property of 
 and � Fermi surfaces leads to the spin-
triplet pairing in Sr2RuO4, as long as the magnetic sus-
ceptibility is strongly anisotropic [11]. Recent 87Sr NMR
measurement for a series of Sr2Ru1�xTixO4 revealed that
anisotropic antiferromagnetic fluctuations are enhanced
continuously toward xc [24]. In the case that the antifer-
romagnetic fluctuations play a constructive role in the
superconductivity, the rate of the suppression in Tc by Ti
substitution, which enhances the antiferromagnetic fluc-
tuations, would be slower [25] than that observed for
crystals with other kinds of impurities [16], with which
the enhanced antiferromagnetic fluctuations are absent.
However, the Tc in Sr2Ru1�xTixO4 is as rapidly sup-
pressed by the strong scattering as with other native
defects shown in Fig. 2. Thus, our result does not appear
to be consistent with the theories based on the antiferro-
magnetic fluctuation mechanism of superconductivity.
Nevertheless, it is not easy to give reliable estimation of
Tc based on a simple RPA approximation. In order to
examine the mechanism, it is thus important to clarify
the roles of spin fluctuations [26] and correlations [12] of
the � band as well.
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FIG. 5. (a) Phase diagram of Sr2Ru1�xTixO4, (b) the value of
CP=T at 0.5 K, and (c) the power-law exponent n of the
resistivity as a function of Ti concentration x.
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In summary, we reported the non-Fermi-liquid behav-
ior emerging near the spin-triplet superconductivity. The
substitution of the nonmagnetic impurity changes the
ground state of Sr2Ru1�xTixO4 from the spin-triplet
superconductivity (0 � x � 0:15%) to the magnetic
ordering (x � 2:5%) with glassy behavior through
band-selective modification of magnetic fluctuations.
The non-Fermi-liquid behavior, attributable to the en-
hanced two-dimensional antiferromagnetic fluctuations,
are observed in the vicinity of the magnetic instability.
The fluctuations, however, do not seem to play a con-
structive role in the occurrence of the spin-triplet super-
conductivity in Sr2RuO4.
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