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Reversible Quantum Brownian Heat Engines for Electrons
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Brownian heat engines use local temperature gradients in asymmetric potentials to move particles
against an external force. The energy efficiency of such machines is generally limited by irreversible
heat flow carried by particles that make contact with different heat baths. Here we show that, by using a
suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have
different temperatures and electrochemical potentials. We apply this result to propose heat engines
based on mesoscopic semiconductor ratchets, which can quasistatically operate arbitrarily close to
Carnot efficiency.
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FIG. 1. Electron transfer between reservoirs: (a) in the pres-
ence of a difference in electrochemical potentials, (b) in the
presence of a temperature difference, and (c) in the presence of
both. (d) The Fermi-Dirac distributions in the energy range
voltage V applied to reservoir R creates a difference in the
electrochemical potentials, ��R ��L� � �eV, where

around �0 � 0:5��L ��R� for TR � 2 K, TL � 0:5 K, and
V � 0:1 mV.
Ratchets combine asymmetry with nonequilibrium
processes to generate directed particle motion [1]. When
nonequilibrium is induced by contact with heat baths at
different temperatures, a ratchet can act as a so-called
Brownian heat engine, converting local spatial or tem-
poral temperature variations into useful work [2,3]. This
mechanism is currently attracting considerable interest
([4–6] and references therein) and in the future may be
applied to power artificial micromachines such as chemi-
cal motors [5,7]. Many proposed Brownian heat engines,
however, have a maximum theoretical efficiency that is
significantly lower than the ideal Carnot efficiency. This
critical limitation to potential applications can generally
be traced to irreversible heat flow via a degree of free-
dom of the ratchet mechanism itself, namely, the kinetic
energy of particles making contact with different heat
baths [4,5].

Derenyi and Astumian analyzed overdamped
Brownian particles moving between different heat baths
and found that Carnot efficiency can be achieved in the
quasistatic limit where the kinetic energy of particles
approaches zero [5]. Here we present a novel mechanism
for reversible particle transfer between heat baths that is
suitable for moderately damped electrons with arbitrary
kinetic energy. Our main result is that two electron res-
ervoirs with different temperatures and electrochemical
potentials can exchange electrons reversibly at the energy
where the Fermi-Dirac distributions in the two reservoirs
have the same value. Using suitable energy filters, one can
construct Brownian heat engines that in principle can
attain Carnot efficiency.

We begin our analysis by considering the transfer of
single electrons between two otherwise thermally iso-
lated electron reservoirs, denoted L and R [Fig. 1(a)].
Each reservoir is described by an equilibrium Fermi-
Dirac distribution with temperatures TL and TR and elec-
trochemical potentials �L and �R, respectively. A bias
0031-9007=02=89(11)=116801(4)$20.00 
��e� is the charge on the electron. The electron mean
free path for inelastic processes is taken to be much larger
than the distance between the reservoirs, but much
smaller than the reservoir’s dimension (so-called moder-
ate damping). This regime of transport is found in meso-
scopic semiconductor devices at temperatures of a few
degrees Kelvin and below [8].

The heat associated with the addition of one electron to
a reservoir (electrochemical potential �) is given by
�Q � �U ��, wherein � is assumed to remain
unchanged, and where �U, the increase in internal en-
ergy, is given by the electron energy. As an example, we
consider an electron traveling from reservoir L to reser-
voir R at constant energy ", where " is measured relative
to the same voltage-independent zero as the electro-
chemical potentials. The change of heat in L associated
with the electron transfer is then �QL � ��"��L�,
where the negative sign in front of the bracket indicates
removal of heat. The heat added to R is �QR � �"��R�
and exceeds ��QL by eV.
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FIG. 2. (a),(b) The energy band structure of this nonlinear
rectifier indicates that of an asymmetric quantum dot forming a
resonant tunneling structure, with an energy level position that
depends on the voltage. Any higher resonant levels are assumed
to be out of the reach of thermally excited electrons. TR > TL is
assumed. (c) A Brownian heat engine consisting of a periodic,
static ratchet potential. Particle flow is against a potential
gradient of �E per period. With the position of ideal energy
filters (indicated as bold horizontal lines) tuned according to
Eq. (2), this ratchet works reversibly.
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The overall increase in entropy due to the transfer of
one electron from L to R is

�S �
�QL

TL
�

�QR

TR
�

��"��L�

TL
�

�"��R�

TR
: (1)

Figure 1 illustrates the meaning of this equation. Consider
two reservoirs at the same temperature T, but with differ-
ent electrochemical potentials, ��L ��R� � eV > 0
[Fig. 1(a)]. Independent of the electron energy, the trans-
fer of an electron from L to R increases the system
entropy by �S � eV=T > 0. In the complementary
case, when TR > TL but V � 0 [see Fig. 1(b)], �S �
��"����1=TR � 1=TL��. This means it is thermody-
namically advantageous (�S > 0) if, on average,‘‘cold’’
electrons (" < �) move from L to R and, by symmetry,
‘‘warm’’ electrons (" > �) move from R to L. The in-
crease in total entropy in both examples, Figs. 1(a) and
1(b), shows that these processes are spontaneous and
irreversible.

Consider now the general case where TR � TL and
�L � �R [Fig. 1(c)]. This is the situation encountered in
Brownian heat engines—when particles driven by a tem-
perature gradient do work against an external force.
Significantly, Eq. (1) yields �S � 0 for " � "S, where

"S �
�LTR ��RTL

TR � TL
: (2)

This is the main result of the present work: two electron
reservoirs with arbitrary temperatures and electrochemi-
cal potentials can exchange electrons at energy "S
reversibly.

The energy "S fulfills the condition fL�"S� � fR�"S�,
where fR=L�"� � 1=f1� exp��"��R=L�=kTR=L�g are the
Fermi-Dirac distribution functions in R and L, respec-
tively, shown in Fig. 1(d) for TR > TL and V > 0. For
" > "S, the probability of finding an electron in reservoir
R is higher than in L. Electrons can thus increase the
system entropy by moving from R to L, following the
temperature gradient. Electrons in the range " < "S can
increase entropy by following the electrochemical poten-
tial gradient from L to R. For " � "S, where the proba-
bility for finding an electron is the same on both sides, the
two driving forces cancel. One may say that at this
particular energy the two reservoirs behave as if they
were in thermal equilibrium with each other. If the two
reservoirs were connected via an ideal energy filter that
was transparent for electrons at "S and at no other energy,
no time-averaged particle or heat current would occur
spontaneously. The warm bath would not cool, and the
voltage would drive no current.

Note that the above situation is distinct from an open-
circuit thermovoltage generated across a quantum point
contact between electron reservoirs where TR � TL [9]. In
that case, even though the net electric current is zero,
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energy needs to be expended to maintain the temperature
difference.

We will now apply Eq. (2) to propose an electron
ratchet that can be operated as a heat engine, and we
will demonstrate analytically how Carnot efficiency can
be achieved using ideal energy filters. Specifically, we
will consider an adiabatically ‘‘rocked’’ electron
ratchet —that is, electrons in an asymmetric potential
that is slowly tilted periodically and symmetrically by
an external force [1]. Because the magnitude and spectral
composition of the current depend on the voltage sign, a
symmetric ac ‘‘rocking’’ voltage generates, on time aver-
aging, a net electric current [10] or heat current [11].

Figures 2(a) and 2(b) illustrate a hypothetical non-
linear device connecting two equal two-dimensional
(2D) reservoirs, L and R, rocked by a square-wave
voltage of amplitude V0. We assume that switching be-
tween the values �V0 occurs on a time scale slower than
any characteristic electronic times, such as energy relaxa-
tion times (so-called adiabatic rocking), but much faster
than the rocking period. It is therefore sufficient to ana-
lyze the device for the two dc situations V � �V0, while
transient behavior can be neglected. The probability for
electrons to be transmitted across the device is
taken as a single Lorentzian resonance, t�";�V0� �
t0=b1� f�"� "res��V0��=�g

2c, with amplitude t0 � 1
and a full width at half maximum of 2�. The filter
resonances, "res��V0� � ��0��V0� ��� for V � �V0,
respectively, are symmetrically arranged around �0 �
0:5��L ��R��V0�� [see Figs. 2(a) and 2(b)]. As can be
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FIG. 3. (a) Efficiency (normalized to the Carnot value) of the
model device in Figs. 2(a) and 2(b) for TR � 1 K � eV0 �
0:1 meV, t0 � 1, and � � 10�4 meV, as a function of the
position of the resonant level, �, and of TL (see main text for
further details). (b) Normalized efficiency for TR � 1 K, TL �
0:5 K, and eV0 � 0:1 meV. Bold lines (left-hand half) are for a
refrigerator, and thinner lines (right-hand half) are efficiencies
of a heat engine. The full line is for � ! 0 [Eq. (5)]. The dashed
lines are calculated for, from bottom to top, � � 10�2, 10�3,
and 10�4 meV. Data are shown only where the efficiencies are
defined. (c),(d) The power of the device in Figs. 2(a) and 2(b)
for the same parameters used in (a) and (b), respectively. To put
the numerical values into context, a cooling power of
107 meV=s corresponds to the heat leaked via phonons to a
2DEG with temperature 0.2 K and area 20 �m2 in a crystal
externally cooled to 0.3 K by a He3 system (estimate based on
Eq. 3.1 in [12]).
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confirmed using Eq. (3) below, this ensures that the time-
averaged electric current Inet�V0� � 0:5�I�V0� � I��V0��
is zero, thus avoiding the trivial condition where a finite
Inet is accompanied by a heat current. As a realization of a
filter with this transmission function, one can consider
coherent resonant tunneling [8] via an asymmetric quan-
tum dot, in which the resonant energy level shifts its value
when a bias voltage deforms the band structure, and
which is connected by 1D quantum point contacts to 2D
electron gas (2DEG) reservoirs.

The steady-state electric current from L to R generated
by a dc bias voltage V applied to R is, for �kT; jeVj� �
�0, given by a Landauer equation [8],

I�V� � �
2e
h

Z 1

0
t�"; V��fL�"� � fR�"; V��d": (3)

The dc heat current entering each reservoir at the given
bias voltage V can be obtained from Eq. (3) by replacing
the electron charge, ��e�, by the heat changes in R and L
associated with each electron moving from L to R,
�QR=L � ��"��R=L�:

qR=L�V� � �
2

h

Z 1

0
�"��R=L�t�"; V�

� �fL�"� � fR�"; V��d": (4)

(The upper sign in � refers to R, and the lower sign refers
to L.) Note that the heat current is not conserved.
Specifically, qL�V� � �qR�V� � I�V�V, where I�V�V is
the externally supplied Joule heating power. Finally, the
net heat current flowing into each of the two reservoirs,
averaged over a full cycle of square-wave rocking, is
given by qnetR=L�V0� � 0:5�qR=L�V0� � qR=L��V0��.

The efficiency of a heat engine, �E, is given by the ratio
of the work output to the heat removed from the warmer
of the two reservoirs [6]. Assuming that TR > TL, we can
write �E � ��W�=��qnetR �, where W � �qnetL � qnetR � is the
electrical power input into the device per cycle. The
coefficient of performance of a refrigerator, cooling the
colder reservoir L using work W, is given by �F �
��qnetL �=W. The corresponding Carnot values are �C

F �
TL=�TR � TL�, and �C

E � �TR � TL�=TR, respectively.
Calculated efficiencies, normalized to the Carnot values,
for the device in Figs. 2(a) and 2(b) are shown in Fig. 3(a).
The line along which the condition "res�V0� � "S�V0� is
fulfilled [and where, by symmetry, "res��V0� � "S��V0�]
is visible as a ridge of high normalized efficiency values.
To the left of this ridge, where "res�V0�< "S�V0�, the
ratchet operates as a refrigerator: during each half cycle
of rocking, the electron flow follows the electrochemical
potential gradient, and heat flows against the thermal
gradient (Peltier effect). Therefore, the normalized effi-
ciency of a refrigerator, �F=�

C
F, is shown on the plot for

this range. For "res�V0� > "S�V0�, the heat flow in each
half cycle follows the thermal gradient, while the electron
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flow does work against the battery (Seebeck effect).
Therefore, �E=�

C
E is plotted.

Along the line "res�V0� � "S�V0� the efficiency coeffi-
cients approach their corresponding Carnot values. To
show this analytically, we note that after several algebraic
steps and using the symmetry of t�";�V0� one can sim-
plify qnetR=L�V0� to qR=L��V0�. Assuming that the width of
the ‘‘energy filter,’’ 2�, is much smaller than the energy
scales kTR=L over which the Fermi-Dirac distributions
vary, one can approximate

qnetR=L�V0� � ��t0
2�
h

�"res��V0� ��R=L��V0��

� ffL�"res��V0�� � fR�"res��V0�;�V0�g: (5)

In the quasistatic limit � ! 0 (where electron flow is
quenched) one obtains the efficiency parameters ��!0

E �
2eV0=�2�� eV0� and ��!0

F � �2�� eV0�=2eV0, where
we used the definition of "res and the relation ��L �
�R��V0�� � eV0. For "res�V0� � "S�V0� [Eq. (2)], one
then recovers the respective Carnot efficiencies. As for
116801-3
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any reversible heat engine, the power output goes to zero
as reversibility is approached. This is apparent in Fig. 3(c)
where the power of the device exhibits a valley along the
line where "res�V0� � "S�V0�.

In Fig. 3(b) we compare the exact calculations of
�F��� (bolder lines) and �E��� (thinner lines) with
��!0
F ��� and ��!0

E ���, respectively. As "res approaches
"S, the exact calculations for finite � increasingly deviate
from the values obtained in the limit � ! 0 [Eq. (5)]. This
is because, when the filter resonance is situated within a
few � around "S�V0�, refrigeration and heat pumping mix
within the transmission range and counteract one another.
Consequently, as "res�V0� approaches "S�V0� from above
(decreasing �), the work output of the heat engine, W,
eventually becomes negative, and as "res�V0� approaches
"S�V0� from below (increasing �), the cooling power
�qnetL of the refrigerator turns into a heating power.
This is also apparent in Fig. 3(d) where W and �qnetL
are shown for "res�V0�< "S�V0� and "res�V0� > "S�V0�,
respectively. Maximum power is always obtained when
the energy filter is set at a value away from "S, and the
power becomes smaller with decreasing �, because fewer
electrons per time unit contribute to the current [Eq. (5)].
Note that for �< 0:5eV0, Joule heating exceeds the cool-
ing power and refrigerator action is not possible in a
rocked device as shown in Figs. 2(a) and 2(b).

The analysis presented here for the case of an adiabati-
cally rocked ratchet device can easily be mapped onto the
case of a static, periodic ratchet [3]. To do so, the two
types of energy filters in Figs. 2(a) and 2(b) would be
periodically sequenced between electron reservoirs of
alternating temperatures, creating an asymmetric ratchet
arrangement as indicated in Fig. 2(c). A macroscopic dc
electric field represents an external force against which
the heat engine does work. Carnot efficiency can be
obtained in principle, if the position of ideal energy filters
between heat baths is tuned according to Eq. (2) such that
only reversible electron flow is possible.

Edwards et al. analyzed the use of resonant tunneling
through single electron states in a quantum dot for heat
pumping purposes [12]. Energy selectivity has been ob-
served in semiconductor quantum dots, using gates to
control position "res and width � of the transmission
resonances, which were confirmed to be Lorentzian with
a width determined only by the lifetime of the energy
states [13]. To realize one cold-hot-cold section of the
device in Fig. 2(c) one could elevate the temperature TH
of a small 2D electron gas region connected via quantum
dots to two electron reservoirs at the lower, ambient
temperature. Adjustment of TH is feasible using a heat
current and thermopower measurements [14]. While con-
trolling the chemical potential in each reservoir by bias
voltages, the output power would be determined from the
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electric current between reservoirs. To determine the heat
engine’s efficiency, the heat input, given by the input
electric heating power minus heat losses to the host
crystal, would be measured in calibration experiments
[14]. Given demonstration of all the components [13,14],
such a measurement is feasible in principle, although
experimentally challenging.

We note that a different type of reversible heat engine,
which operates in the absence of a gradient in chemical
potential, is a maser system that receives a photon of one
energy from a hot reservoir and deposits a photon of
lower energy in a cold reservoir, using the difference as
work [15]. That strategy is suitable for photons, but not for
particles with mass and charge as considered here.
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