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The orbital magnetic moment due to rotation or pseudorotation in a molecule or a solid and the
corresponding rotational g factor are formulated using the Berry-phase technique and standard density
functional plane wave methods. Among the simplest molecules, H�

2 , H2, C2H2, CH4, and CF4, with
known rotational g factors, are used as test cases with excellent results. Alternative, faster localized orbital
calculations including the magnetic coupling through heuristic Peierls phase factors are also tested and
found to be viable, though less accurate. Application to pseudorotations is exemplified in benzene. It is
proposed that these methods will be suited for application to pseudorotations in solids.
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available, and where a direct physical interpretation of
the magnetic screening factor is quite transparent. An

of the phase around the path [8], a quantity uniquely
determined by the condition that the highest occupied
Rotations and pseudorotations in molecules and in solids
are cyclic motions where the ionic coordinates execute a
closed orbit, thus giving rise, in virtue of their bare charge,
to an orbital magnetic moment. Electrons, however, also
take part in the motion; and were they to cling infinitely
tightly to the ions, they should completely screen—totally
cancel—the ionic orbital magnetic moment. In reality, the
electrons are tied only softly to the ions, and do not exactly
cancel the ionic magnetic moment. The compound result
of ion and electron orbital motion is a total rotational g
factor tensor gRii, i � 1; 2; 3 [1], whose components may
take real values, ranging from one (no screening) to zero
(perfect screening), to negative (overscreening). gRii is a
basic property, long known for rotation of simple mole-
cules such as H2 [2,3], but not always quantitatively avail-
able, particularly for pseudorotations. The latter may be of
special relevance for Jahn-Teller (JT) and pseudo-JT sys-
tems in free molecules and in solids. High-accuracy
Hartree-Fock and multiconfigurational self-consistent field
molecular calculations of rotational g factors are well
established in the chemical literature[1,4,5] . Though quite
successful, these approaches are not easily extended to
solids. On the other hand, the density functional methods
that are standard in both solids and molecules could, in
principle, be straightforwardly extended to calculate gR,
e.g., through the Berry-phase technique [6–8] introduced in
computational physics by King-Smith and Vanderbilt [9]
and recently applied to spin waves by Niu et al. [9]; but no
practical implementation appears to be available.

In this Letter, we introduce practical and accurate den-
sity functional Berry-phase plane wave calculations of the
rotational g factor of closed-shell electronic systems, mo-
lecular or solid. We provide a first demonstration by apply-
ing them to rotation and pseudorotation of simple
molecules, for some of which accurate gR values are
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alternative density functional local orbital calculation
scheme including magnetic field through Peierls phase
factors, a heuristic simplification of the more standard
phase shifted London basis [4], is benchmarked against
the plane wave method, and is shown to be viable and
considerably faster, if somewhat less accurate. Application
to pseudorotations are finally presented for benzene, laying
the ground for future application to pseudorotations in
solids.

In the adiabatic approximation, the kinetic energy of ion
� with canonical momentum P� in an external magnetic
field B � r�A is [6–8]

T �
1

2M
�P� �A�R�� � ��	2; (1)

where, as usual, A accounts for the bare Lorentz force, and
�� � i

P
occ
n h njrR�

j ni is the electronic screening cor-
rection to the bare Lorentz force, in the form of a Berry
connection. The role of this geometric vector potential is to
carry the extra field-induced phase factor due to the adia-
batic evolution of electrons with wave functions j ni de-
pending parametrically upon R�, and is a natural
consequence of the requirement that the wave functions
be single valued as a function of the nuclear coordinates
[6]. Instead of evaluating directly the Berry connection �,
we calculate the discrete Berry-phase 
 [8] around a closed
orbit in configuration space (R�), by subdividing the path
in a finite number of steps:


 � i
I

��R�  dR ’ �Im log det
YN�1

��0

h �j ��1i; (2)

where index � runs on successive atomic configurations in
the orbit. This discrete formulation (2) has the crucial
advantage of being applicable regardless of the regularity
 2002 The American Physical Society 116402-1



TABLE I. Plane wave (PW), localized-basis (LB), and exact
(EX) result: DFT stands for pseudopotential self-consistent local
density functional calculation; unless otherwise indicated, the
PW calculations are DFT with a PW cutoff energy of 80 Ry. SZ,
DZ, and DZP are basis sets used for the LCAO expansion.

Molecule g factor Notes

H�
2 0.9459 PW, EX 80 Ry

(rotation) 0.9458 PW, EX 120 Ry
0.9457 PW, EX 160 Ry
0.9457 PW, EX 200 Ry
0.9425 PW, DFT 80 Ry
0.9411 LB, SZ
0.9115 LB, DZ
0.9359 LB, DZP

H2 0.8787 Experiment [2]
(rotation) 0.8755 PW

0.8765 LB, SZ
0.8258 LB, DZ
0.8694 LB, DZP
0.8899 MCSCF [5]

C2H2 0.0490 Experiment [3]
(rotation) 0.0405 PW

0.0782 LB, SZ
0.0139 LB, DZP
0.0570 MCSCF [5]

CF4 �0:0312 Experiment [3]
(rotation) �0:0445 PW

�0:0151 LB, SZ
�0:0080 LB, DZP

CH4 0.2040 PW
(rotation) 0.219 LB, SZ

C6H6 0.7851 PW, A � 0:04 �A
(pseudorotation �18) 0.7934 PW, A � 0:10 �A

0.7596 LB, SZ, A � 0:02 �A
0.7593 LB, SZ, A � 0:04 �A
0.7595 LB, SZ, A � 0:10 �A
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orbital be separated by a finite gap from the lowest un-
occupied at any � point of the path. The adiabatic approxi-
mation assumed should be fully valid insofar as the
rotational excitation energies remain much smaller than
that gap. Richer situations could arise for molecular sys-
tems with an odd electron number and degeneracy [7]; we
shall restrict here to nondegenerate closed-shell cases.

In general, the orbit will either consist of a true molecu-
lar rotation, or of a pseudorotation in a molecule or in a
solid, where the nuclei undergo concerted small size orbits,
generally not circular but closed, around highly symmetric
positions. In a pure rotation about some axis, the nuclei are
planar rigid rotators and the bare magnetic phase is simply
equal to the total flux through the circular orbits of all
nuclei, each weighted by its charge. For each nucleus, we
used an effective nuclear charge equal to the valence
charge only, assuming the core electrons, when present,
to be well localized so as to screen completely the corre-
sponding nuclear charge fraction. The Berry-phase sum-
mation (2) must generally be carried out explicitly over a
suitably fine set of points, covering a finite irreducible arc
as dictated by the point symmetry of the molecule or of the
crystal cell. The magnetic screening � is defined as the
ratio of the Berry phase over the bare magnetic phase. The
rotational g factor, the ratio between the total molecular
magnetic moment and the mechanical moment, is

g � ��� 1�

P
� Z�r

2
�P

� m�r
2
�
; (3)

where r� is the distance of nucleus � from the rotation
axis, m� is its mass in proton units, and Z� is its valence
charge. Calculations were carried out within standard den-
sity functional theory (DFT) in the local density approxi-
mation, using norm conserving pseudopotentials and plane
wave expansions up to 80 Ry. Molecules were placed in a
periodically repeated cubic cell, large enough to make
interactions between copies irrelevant. We restricted to
weak magnetic fields, of the order of laboratory fields
(104–105G), whose effect can be treated as a perturba-
tion—the charge distribution thus unchanged to lowest
order. The field was parallel to the rotation axis, taken
through the center of mass and perpendicular to the mo-
lecular axis in H2, H�

2 , C2H2, along one of the bonds in
CH4 and CF4, and orthogonal to the molecular plane in
benzene. First order corrections to the ground state wave
functions were calculated within linear response theory
[10] following the prescription of Ref. [11]. The vector
potential was chosen in the following form:

Aq � �iq� Bq�=�c jqj2� exp�iq  r	: (4)

This corresponds to a magnetic field B � Bq exp�iq 
r	, modulated with a small wave vector q ? B. For prac-
tical calculations, we chose jqj � 0:01�=a, where a is the
side of the cubic cell.
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If the unperturbed Hamiltonian can be chosen to be real,
as is the case for local pseudopotentials, the electronic
Berry-phase calculation can be simplified exploiting full
rotational symmetry, i.e., iterating to 2� the incremental
phase difference between two very close configurations.
The summation must instead be done explicitly for non-
local pseudopotentials where the Hamiltonian is complex,
and only the cell symmetry can be used. The same applies
to pseudorotations, where the orbit has molecular symme-
try and is generally not circular.

As the first test case, we studied the rotation of H�
2 , a

single electron molecule that can be calculated exactly.
Setting the bond distance at the experimental equilibrium
value 2.0 a.u., and using for H the bare proton Coulomb
potential (not the pseudopotential), we obtained an elec-
tron screening of �5:4%, and thus a g factor of 0.946 (see
Table I for convergence details). This, we note, is a very
116402-2
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FIG. 1. Illustration of orbital current caused by a pseudorota-
tion in benzene. Plot shows the difference between distorted and
undistorted electron density in the molecular plane at increasing
values of the phase � of the counterclockwise ion pseudorota-
tion. Full lines: electron accumulation; dashed lines: electron
depletion. Interval between isocharge lines: 4 � 10�5 �au��2.
Carbon displacement amplitude 0:1 �A, here enhanced by a factor
for clarity. Note the clockwise motion of electron accumulation,
and its phase shift into a depletion at � � �. The current is
basically reversed from � � � to � � 2�, explaining a rela-
tively small magnetic screening (see text).
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poor screening, reflecting the effective concentration of the
electron in the vicinity of the bond center. Lacking an
experimental comparison, this accurate result, while con-
firming an earlier variational estimate of about �5% [12],
can be used to test the standard self-consistent pseudo-
potential electronic structure calculations to be routinely
used later on. Carrying out that calculation for H�

2 using
now a pseudopotential for H, and standard self-consistency
(as if H�

2 were a many-electron system), we found a g
factor of 0.9425, in close agreement with the exact result
0.946. Satisfied by this check, we moved on to calculate the
rotational g factor of the H2 molecule. Using the experi-
mental bond length of 1.4 a.u., we calculated a g factor of
0.8755, in excellent agreement with the experimental value
of 0.8787 obtained long ago by Ramsey [2]. Comparison
with H�

2 indicates that the two electrons of H2 just ap-
proximately double to �12:45% the single electron screen-
ing �5:4% of H�

2 , irrespective of a factor 1.42 in the H—H
distance.

In order to further benchmark the accuracy of our
method, we considered next three molecules with large
magnetic screening and small g factors [3], namely, acety-
lene (C2H2), methane (CH4), and carbon tetrafluoride
(CF4). In these molecules, the C Hand C Fbonds possess
a partly ionic character, some electron fraction attracted to
a larger distance from the center, and thus likely to screen
more effectively the nuclei. Our results (Table I) confirm a
large screening and agree very closely with experiment
where available. The small g factor is thus an indicator of
ionicity, whereas (as exemplified by H2) a g factor close to
1 is characteristic of the covalent bond. The marginally
positive g factor of C2H2 confirms nearly perfect screening
of nuclei, whereas the marginally negative g factor of CF4

indicates a slight overscreening (j�j > 1), due to an im-
portant electron fraction that effectively orbits beyond the
C Fdistance. For CH4, we calculated a rotational g factor of
0.20, but found no data in literature for comparison.
However, constrained rotations of methyl end groups
( C—CH3) about the C Cbond have been studied. In par-
ticular, the L � 1 rotational state �E � �Ng

RB�m �
�7:622 MHz� gRB�m (B in tesla) has been pursued [13]
by NMR in acetylacetone [�CH3CO�2], showing a splitting
of about 38 kHz for a field of 0.05 T, corresponding to a
methyl group g factor of about 0.1. This screening level is
somewhat larger than that calculated for CH4, most likely
reflecting a slight increase in ionicity of the methyl C H
bonds, compensating the decrease in the C Cbond. This
underlines an exquisite sensitivity of the rotational g factor
to even delicate changes of the chemical circumstances.

Besides rotations, the present technique can be directly
applied to calculate g factors for pseudorotations. They
appear in molecules and in solids as suitably degenerate
vibrational modes. As the simplest prototype, we chose the
lowest E2 mode of benzene C6H6, of frequency �18 at
606 cm�1 [14]. Here, nuclei move in the molecular plane,
the pseudorotation generated by combining the two ei-
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genmodes with a phase factor ui � A����u�1�
i cos��

u�2�
i sin�	, where A��� is the amplitude. For a general large

distortion, A��� should, of course, be determined for each �
in such a way to minimize the total energy, giving a non-
circular pseudorotation orbit; in the present case of a small
vibration, A��� was chosen constant. A pseudorotation in
benzene is expected to trigger orbital currents encircling
the large molecular radius, and that might lead to unusually
large magnetic screenings. The calculated g factor of
benzene (Table I) indicates instead for this pseudorota-
tional mode a surprisingly modest 20% screening by the
orbital electron currents. To understand that, we display in
Fig. 1 frames showing the evolution with � of the electron
charge density difference relative to undistorted benzene.
Atoms pseudorotate counterclockwise, their small orbit
causing large orbital electron currents with a complex
pattern. The electron imbalance forms a sort of dipole—
from the C Hbonds to the carbon ring—that rotates clock-
wise, while shifting phase, until at � � � its sign has
reversed—from the carbon ring to the C H bonds.
Moreover, from � � � until � � 2�, the charge motion
occurs in reverse. The nearly exact balance of positive and
negative currents explains the globally small magnetic
screening in benzene. According to our calculated g factor,
a magnetic field should theoretically lead to a splitting of
this E2 mode ��18 � 5:984 MHz �B=tesla� �m. For a field
of 10 T, the calculated splitting is only a tiny 59.8 MHz,
when compared with a reported linewidth of about
500 GHz even below 50 K [15].
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In addition to the accurate plane wave calculations just
demonstrated, it seemed desirable to develop an even
simpler scheme for a faster approximate evaluation of
rotational and pseudorotational g factors. We explored a
parallel formulation based on a localized-basis set, appli-
cable both to isolated molecules and to periodic systems.
Consider a wave function  R�r� for a nondegenerate level
of an atom located at position R. Translation in a field is
accompanied by a phase factor [16]  R�r� �  0�r�
R� exp��ie=c�%�R ! r�	, where  0�r�R� is the atomic
wave function centered in R; and %�R ! r� is the integral
of the vector potential along the straight line connecting R
to r. For a very localized state, the magnetic phase factor
can be included in the tight-binding or LCAO form,

&�r� �
X
k

ck exp��ie=c�%�Rk ! r�	"k�r�Rk�; (5)

where k is the index spanning all the localized-basis func-
tions, Rk is center of the kth basis function, and %�Rk !
r� is the phase associated with the center Rk. In conclu-
sion, the hopping matrix elements of the one-body effec-
tive Hamiltonian, are renormalized by the so-called Peierls
factor:

Hkk0 ! Hkk0 exp��ie=c�%�Rk ! Rk0�	: (6)

This Peierls phase approximation is valid for slowly
varying magnetic field relative to atomic distances. It
should become equivalent to the exact London shifted
basis [4] in the limit of infinitely localized-basis functions,
and is thus affected by an error proportional to the amount
of delocalization. Within this formalism, there is no need to
perform a linear response calculation, but only standard
matrix diagonalizations. We employed the fully self-con-
sistent DFT code SIESTA [17], based upon an expansion of
the wave functions on atom-centered basis orbitals, and the
same pseudopotentials as described earlier. The charge
density was expanded up to a kinetic energy of 320 Ry.
We used three sets of basis functions: the minimal basis
(single-�, SZ); the SZ basis set plus the first excited states
(double-�, DZ); the DZ basis plus d orbitals (DZP).
Following the same procedure as in the plane wave case,
we diagonalized the Hamiltonian for different atomic con-
figurations and calculated the Berry phase with Eq. (2). We
repeated calculations for all molecules considered earlier,
and obtained the rotational g factors summarized in Table I.
Though clearly less accurate, the agreement with experi-
ment and with the plane wave calculations is still quite
good. Interestingly, the simplest minimal basis set SZ
calculations, including just one function per angular mo-
mentum channel, gives the best results. In particular, in
CF4 where the g factor is marginally negative, the bigger
DZP calculation fails to reproduce the overscreening but
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the SZ gets it. When using larger basis sets, the excited
states are more diffuse and the Peierls approximation is
evidently worse. Altogether the localized-basis calcula-
tions require much less computational effort than the plane
wave ones. In our case, the CPU time required was 4 to 5
times smaller; and for bigger molecules the ratio is ex-
pected to increase. Moreover, the memory requirements
are far smaller, since the wave functions do not need to be
memorized. This advantage should make that method pref-
erable for larger size problems where the plane wave
approach becomes impractical.

We stress in closing that, formulated as they are on a
periodic lattice, both methods described here are automati-
cally suited to calculate magnetic screening for rotations
and pseudorotations in insulating solids. We are actively
working along that direction, and will be reporting results
in the near future.
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