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‘‘Two-Photon’’ Coincidence Imaging with a Classical Source
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Coincidence imaging is a technique that extracts an image of a test system from the statistics of photons
transmitted by a reference system when the two systems are illuminated by a source possessing
appropriate correlations. It has recently been argued that quantum entangled sources are necessary for
the implementation of this technique. We show that this technique does not require entanglement, and we
provide an experimental demonstration of coincidence imaging using a classical source. We further find
that any kind of coincidence imaging technique which uses a ‘‘bucket’’ detector in the test arm is
incapable of imaging phase-only objects, whether a classical or quantum source is employed.
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FIG. 1. (adapted from [12]) Two-photon coincidence imaging.
The transfer function of the test system is to be obtained from
not required for coincidence imaging. In this Letter, we
present theoretical arguments and provide experimental

the joint detection statistics using knowledge of the reference
system.
Light has long been a convenient subject for the study
and observation of nonclassical phenomena. Over the past
decade, the ready availability of materials with strong
optical nonlinearities has enabled significant advances in
the practical use of such phenomena. Quantum cryptogra-
phy [1], quantum teleportation [2,3], quantum lithography
[4,5], and precision measurements below the standard
quantum limit [6–9] have all been demonstrated experi-
mentally. Even so, the use of nonclassical states in con-
junction with the highly parallel nature of the optical field
is still just beginning to be understood and exploited [10].
In particular, the technique of two-photon coincidence
imaging [11] has recently emerged as a new way to extract
information about an optical system. In this technique, a
source which produces pairs of photons is required. One
photon in each pair travels through a known (reference)
optical system, while the other travels through an unknown
(test) optical system (Fig. 1). The location of the reference
photon is recorded on a detector array, while a second
detector merely registers whether or not a test photon has
been detected. The seemingly counterintuitive finding is
that by placing the reference detector array in the appro-
priate plane in the reference arm, the image of the test
system appears in certain coincidence statistics at the
reference detector [13]. These coincidence statistics are
obtained by gating the reference detector by the test de-
tector. The first demonstration of this technique [11] used a
source which produced quantum entangled photons
[14,15]. At the time, the authors of [11] surmised that
this imaging technique could also be implemented using
a classical source with the proper statistical properties.
Since then, some confusion has arisen whether or not
entanglement is truly necessary for this technique. A recent
Letter [12] has presented theoretical arguments for the case
that entanglement is intrinsic to two-photon coincidence
imaging. Although we agree that entangled sources possess
some statistical properties that cannot by mimicked by
classical sources, we believe that these properties are
0031-9007=02=89(11)=113601(4)$20.00
demonstration that coincidence imaging can be performed
with a classical source, making it an even more practical
technique.

Two-photon coincidence imaging relies on the fact that
the single-photon detection probability distribution pr�xr�
can be different from the marginal distribution �ppr�xr� �R
p�xr; xt�dxt. Here pr�xr� is the probability of detecting a

photon at position xr in the reference detector, and p�xr; xt�
is the probability of detecting a photon at xr in the refer-
ence detector in coincidence with a photon at xt in the test
detector. Note that the marginal distribution is just the
image collected by the reference detector when it is gated
by the test (bucket) detector. According to classical proba-
bility theory, �ppr�xr� � pr�xr� provided that the integration
over xt (bucket detection) covers all possible outcomes.
Thus, on first inspection it would seem that a difference
between these two distributions is a violation of classical
probability and hence is an intrinsically quantum phe-
nomenon. This is the conclusion reached in [12].

One might suppose that the origin of this difference is
the well-known quantum mechanical effect that measure-
ment of one observable can alter the statistics of another
observable. That cannot be the case here, however, as
the photon counts at the two detectors are compatible
 2002 The American Physical Society 113601-1



FIG. 2. The experimental setup used to perform coincidence
imaging with a classically correlated source (shaded box).

FIG. 3. The image formed in the reference arm when gated by
the detector in the test arm. Such an image corresponds to the
marginal probability distribution.
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observables. The only way the total number of photons
detected at xr can differ from the number of photons
detected at xr in conjunction with photons anywhere on
the test detector is if some photons are lost en route to the
test detector—that is, if the test region is lossy. In this case,
integration of the joint detection probability over xt does
not cover all possible outcomes, and it is entirely consistent
from a classical perspective that pr�xr� and �ppr�xr� would
differ.

The link between the presence of loss in the test arm
and inequality of pr�xr� and �ppr�xr� can be established
rigorously. A quantum source in a general two-
photon state is described by the state function j�i �R
dxdx0’�x; x0�j1x; 1x0 i, where 1x denotes a single quantum

of excitation at position x on the source. The projections of
this state onto localized excitations at the test and/or refer-
ence detector are

h1xt j �i �
Z

dxdx0ht�xt; x�’�x; x
0�j1x0 i; (1)

h1xr j �i �
Z

dxdx0hr�xr; x
0�’�x; x0�j1xi; (2)

h1xt ; 1xr j �i �
Z

dxdx0ht�xt; x�hr�xr; x0�’�x; x0�: (3)

The single and joint photon detection probability distribu-
tions are then [12]

pt�xt� �
Z

dx0
�������
Z

dxht�xt; x�’�x; x
0�

�������
2
; (4)

pr�xr� �
Z

dx

�������
Z

dx0hr�xr; x0�’�x; x0�

�������
2
; (5)

p�xt; xr� �

�������
Z

dxdx0ht�xt; x�hr�xr; x
0�’�x; x0�

�������
2
; (6)

where hr and ht are the impulse response functions of the
reference and test systems, respectively. If the test system
is without loss or gain, the kernel ht is unitary and (by
definition of unitarity)

R
dxtht�xt; x�h�t �xt; y� � ��x	 y�.

Integrating Eq. (6) over xt and substituting this identity
yields

�ppr�xr� �
Z

dxdx0dydy0hr�xr; x
0�h�r�xr; y

0���x	 y�


 ’�x; x0�’��y; y0� (7)

�
Z

dxdx0dy0hr�xr; x0�h�r�xr; y0� 
 ’�x; x0�


 ’��x; y0� (8)

� pr�xr�: (9)

If pr�xr� and �ppr�xr� are to be unequal, as is required for
coincidence imaging, ht cannot be unitary, meaning that
the test system must possess loss or gain. Thus the method
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of two-photon coincidence imaging with a bucket detector
cannot be used to image phase-only objects.

A classical system which made use of the difference
between these distributions to form an image is shown in
Fig. 2. A classical source (the shaded box) produced pairs
of angularly correlated pulses, with one member of each
pair propagating through an amplitude mask to a bucket
detector (the test arm) and the other propagating to a CCD
camera (the reference arm). These pairs of pulses served as
classical analogs of momentum-correlated photons pro-
duced by an entangled source. The frame grabber for the
CCD camera could be gated by the bucket detector so that a
frame would be recorded only if the test beam was not
obstructed by the test pattern. The ordinary image was
obtained by averaging all frames (no gating) and showed
no pattern. The coincidence image was obtained by aver-
aging only the gated frames and showed the test pattern
(Fig. 3). This experiment is completely analogous to that of
[11], the only significant difference being that a classical
source was used rather than an entangled source. Our
classical source was made by chopping a laser beam,
deflecting it by a variable amount, then passing it through
a beam splitter. The motion of the deflector was asynchro-
nous with the period of the chopper, so that the deflection
of the beam on any given pulse was a pseudorandom
quantity. Although this quantity was in principle known,
making the test arm unnecessary, we emphasize that
the position of the deflector was not measured nor made
113601-2
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available to the imaging system, in order to demonstrate
the principle of coincidence imaging.

We now turn to the broader question of whether any
classical source can produce the distributions pt�xt�,
pr�xr�, and p�xr; xt� associated with a quantum source in
an arbitrary pure state. A classical source may be modeled
by a stochastic process which excites field distributions
E�t�
n �x� and E�r�

n �x0� in the test and reference arms, respec-
tively, with probability Pn. The detection probabilities
corresponding to Eqs. (4)–(6) are proportional to the ex-
pected values of the intensity and are

pt�xt� �
X
n

Pn

�������
Z

dxht�xt; x�E
�t�
n �x�

�������
2
; (10)

pr�xr� �
X
n

Pn

�������
Z

dx0hr�xr; x
0�E�r�

n �x0�

�������
2
; (11)

p�xt; xr� �
X
n

Pn

�������
Z

dxht�xt; x�E
�t�
n �x�

�������
2




�������
Z

dx0hr�xr; x0�E
�r�
n �x0�

�������
2
: (12)

If the probability distributions Eqs. (10)–(12) are to equal
Eqs. (4)–(6) for arbitrary test and reference systems, one
must have

’�x; x0�’��y; y0� �
X
n

PnE
�t�
n �x�E�r�

n �x0�E�t��
n �y�E�r��

n �y0�:

(13)

When the quantum source is not entangled, ’�x; x0� is
factorable and Eq. (13) is satisfied by a single classical
state of unit probability with E�t�

1 �x�E�r�
1 �x0� � ’�x; x0�.

When the source is entangled, then Eq. (13) cannot be
satisfied, as there is no way for the right-hand side to factor
into a function of �x; x0� and a function of �y; y0� while
being unfactorable in x and x0. Thus, a classical source
cannot mimic a quantum source in a pure state for all test
and reference systems unless that state is nonentangled.

A classical source can be used for coincidence imaging,
however, because the requirements are less stringent than
those for mimicking a quantum source under general cir-
cumstances. For one, the classical source need only pro-
duce the same joint probability distribution as the quantum
source, as the singles distributions are not used in forming
the image. Second, the reference system is not arbitrary; its
transfer function may be taken as known. Supposing the
reference system to be lossless (or at least invertible),
one may choose E�r�

s �x0� to produce a diffraction-
limited spot at the point s on the reference detector.
Then j

R
dx0hr�xr; x0�E

�r�
s �x0�j2 � ��xr 	 s�. Now, with

the choice E�t�
s �x� � �

R
dx0hr�s; x0�’�x; x0� where

�	2
R
ds � 1, Eq. (12) becomes
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p�xt; xr� �
X
s

Ps�
2��xr 	 s�




�������
Z

dxdx0ht�xt; x�hr�s; x0�’�x; x0�

�������
2
: (14)

In the continuum limit
P

s Ps !
R
dsP�s� with P�s� �

�	2, Eq. (14) reproduces Eq. (6). Just as with a quantum
source, p�xt; xr� may be thought of as the intensity distri-
bution of a point source at xt which diffracts backward
through the test system, is modulated by ’�x; x0�, and
diffracts through the reference system [16]. We emphasize
that this (classical) joint distribution is identical to that
obtained with the quantum source. Therefore, all techni-
ques and phenomena which depend only on this distribu-
tion (and involve a test arm with a known, invertible
transfer function), including coincidence imaging, coinci-
dence ‘‘holography’’ [16], and ghost diffraction [13], can
be demonstrated using a classical source. (We note that
ghost diffraction uses a pinhole detector rather than a
bucket detector in the test arm and has not been demon-
strated by the experiment presented here.) In the case of a
perfectly and uniformly entangled source [’�x; x0� �
��x	 x0�], the entangled photons in each pair emitted by
the quantum source are conjugates of one another and the
classical fields likewise reduce to E�t�

s �x� � hr�s; x� �

E�r�

s �x���. In this case, each pair of fields in the clas-
sical ensemble corresponds directly to a pair of entangled
photons.

In conclusion, we have shown that coincidence imaging
can be performed using a classical source, even though it
was previously thought that entanglement was necessary
for implementing this technique. We have presented theory
showing that, although classical sources cannot mimic the
global statistics of entangled sources, the joint detection
statistics which occur in the context of coincidence imag-
ing can be produced using a classical source with the
appropriate correlations. We further find that any type of
coincidence imaging technique which uses a bucket detec-
tor cannot be used to image phase-only objects. Finally, we
have confirmed the theory by forming a coincidence image
of a test object without using a quantum (entangled)
source.
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