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Crossover from One to Three Dimensions for a Gas of Hard-Core Bosons
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We develop a variational theory of the crossover from the one-dimensional (1D) regime to the 3D
regime for ultracold Bose gases in thin waveguides. Within the 1D regime we map out the parameter space
for fermionization, which may span the full 1D regime for suitable transverse confinement.
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effectively 1D system, applicable when the waveguide is so
long and narrow (high transverse frequency) that trans-

pseudopotential does not encounter the difficulties (diver-
gences and poorly posed variational problem) [15,16]
It has recently been proved by Lieb and Seiringer [1] that
in a suitably defined dilute limit, the many-body ground
state of a trapped ultracold gas of bosons in two or three
dimensions exhibits Bose-Einstein condensation into that
orbital which minimizes the Gross-Pitaevskii (GP) energy
functional, and, in fact, that the condensation is complete in
the sense that the condensed fraction is unity. Their work
should be consulted for precise definitions and hypotheses
required for the proof; here we reiterate only a few points
relevant here. In the 3D case the dilute limit is defined as
a ! 0 and N ! 1 with both the trap potential and Na
fixed where a is the s-wave scattering length and N the
number of particles, and in the 2D case it is defined as a !
0 and N ! 1 with the trap potential and N=j ln�a2N�j
fixed. They point out that in 1D their proof fails, where
there is presumably no Bose-Einstein condensate (BEC)
even at zero temperature (many-body ground state). In fact,
the exact many-body ground state of a spatially uniform
(untrapped) 1D Bose gas with repulsive zero-range (delta
function) interaction was found long ago by Lieb and
Liniger (LL) [2] for all values of a 1D coupling constant
g1D, and was shown by them to reduce for g1D ! 1 to the
exact many-body ground state of the impenetrable point
Bose gas (‘‘Tonks gas’’) found previously by one of us [3],
for which Lenard proved rigorously [4] that the occupation
of the lowest orbital is bounded above by const�

����
N

p
,

ruling out BEC (occupation proportional to N). In the
case of a trapped Tonks gas no such rigorous bound is
known, but our numerical evaluation of the largest eigen-
value of the reduced single-particle density matrix of our
exact many-body ground state [5] suggests strongly that
the most highly occupied orbital has occupation behaving
like Np with 0< p< 1, again indicating absence of true
BEC. In what follows we will use the term 1D condensate
to describe the ground state of the trapped gas when the
system is still 1D, in that it has the transverse profile of the
trap ground state, but the energy has deviated below that
for an impenetrable Tonks gas.

It is clear from the above discussion that for real atom
waveguides, for which the idealized limits a ! 0 and N !
1 do not strictly apply, a crossover must occur from an
0031-9007=02=89(11)=110402(4)$20.00
verse excitations are frozen, to a 3D system with BEC
accurately treated by the GP equation (weaker transverse
binding), the basis of most theoretical work on trapped
BECs. Detailed analysis of this crossover is important for
comparison with experiments, since the 1D regime has
already been achieved experimentally [6–9] and the
Tonks regime (1D and sufficiently large g1D) is being
approached [9]. The dynamical reduction from 3D to 1D
and precise conditions on parameters necessary for
achievement of both the 1D limit and the Tonks-gas limit
of the 1D regime have been discussed in detail by Olshanii
[10] and by Petrov et al. [11]. In addition, Dunjko et al.
[12] have investigated the crossover between the Thomas-
Fermi and Tonks-Girardeau regimes in a 1D trap. Here we
note only that the 1D regime occurs when the waveguide is
so thin (transverse frequency so high) and density and
temperature so low that the longitudinal thermal and
zero-point energies are both low compared with the lowest
transverse excitation energy, resulting in ‘‘freezing out’’ all
transverse excitations. The Tonks limit requires, in addi-
tion, that the scattering length a is large enough and/or 1D
density n low enough that �h2n=mg1D � 1 where the effec-
tive 1D coupling constant is g1D 	 2�h2a=m‘20 and ‘0 	���������������
�h=m!0

p
is the transverse oscillator length.

Trap geometry.—A convenient geometry for discussing
the crossover is a toroidal trap of high aspect ratio R 	
L=‘0. The transverse trap potential is symmetric about a
circular axis on which the trap potential is minimum, and
harmonic with respect to a coordinate � measured trans-
versely with respect to this circle. This geometry can
equally well be interpreted as an infinitely long, straight
cylindrical waveguide with periodic boundary conditions
in the longitudinal direction. Such toroidal traps have been
experimentally produced and loaded [13,14].

Hamiltonian.—We use a many-body Hamiltonian with
harmonic transverse binding and the usual Fermi pseudo-
potential interaction v�rij� 	 4�a��rij� with a positive
s-wave scattering length a. This leads to a well-defined
problem in 1D, the LL model [2]. Our toroidal system is
‘‘almost 1D’’ since the transverse dimensions are confined,
and we find that the variational problem with the Fermi
 2002 The American Physical Society 110402-1
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found in the 3D case. The Hamiltonian is then

ĤH 	
XN
j	1

�



�h2

2m
r2
j �

1

2
m!2

0�
2
j

�
�g3D

X
1j<‘N

��rj 
 r‘�;

(1)

where g3D 	 4�a�h2=m is the 3D coupling constant. The
Laplacian is to be expressed in cylindrical coordinates
rj 	 �zj; �j; �j� where zj, with 0  zj  L, is a 1D coor-
dinate measured around the torus circumference, and �j is
the transverse radial coordinate and �j the azimuthal angle
measured from the central torus axis.

Variational ground state.—We use a trial variational
ground state which assumes factorization of longitudinal
and transverse parts, with the transverse part depending on
a single orbital �tr independent of azimuthal angle:

�0�r1; . . . ; rN� 	 �long�z1; . . . ; zN�
YN
j	1

�tr��j�: (2)

The factorization of the coordinate dependencies and use
of a single transverse orbital are legitimate variational
ansatzes as shown in a recent study [17] of anisotropic
BEC where similar trial functions led to results in agree-
ment with experiment in regimes ranging from 3D to
effective 1D. Single transverse orbital description is ob-
vious in the two limits: (a) tight transverse confinement,
transverse excitations frozen, �tr is the unperturbed trans-
verse oscillator ground state; (b) weak transverse confine-
ment and low density, �tr is the transverse part of GP
orbital. More generally, we leave the functional form of
�tr free, to be determined as part of the minimization of the
variational ground state energy E0 	 h�0jĤHj�0i.
Assuming �tr and �long normalized according toZ 1

0
2��d�j�tr���j

2 	 1Z L

0
dz1 � � �

Z L

0
dzNj�long�z1; . . . ; zN�j

2 	 1
(3)

one finds that the energy expectation value of �0 decom-
poses as E0 	 N�tr � Elong with
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0
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where ĤH long is an effective longitudinal Hamiltonian

ĤH long 	
XN
j	1
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X
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��zj 
 z‘� (5)

and g1D is an effective 1D coupling constant

g1D��tr� 	 g3D
Z 1

0
2��d�j�tr���j

4: (6)

Note that the separation of transverse and longitudinal
energies is only partial, since g1D depends on �tr. We
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take the value of the g1D corresponding to the transverse
ground state, with oscillator length ‘0, as a reference

g 	 g1D

�
1����
�

p
‘0
e
�2=2‘20

	
	

g3D
2�‘20

(7)

and define the fractional 1D coupling constant �gg1D 	
g1D=g. For a 1D system �gg1D 	 1, whereas it decreases as
the system crosses over to 3D. The relevant dimensionless
intensive variable of a 1D system " 	 mg1D=�h2n [2] sug-
gests a dimensionless measure �nn 	 �h2n=mg of the linear
density n 	 N=L. We should keep in mind that g / !0 and
will vary as the transverse confinement changes.

The total energy E0 is to be minimized with respect to
variation of both �tr and �long subject to the normalization
constraints. We do this in two steps, first holding �tr
constant and minimizing Elong with respect to
�long�z1; . . . ; zN�, then minimizing the resultant E0 with
respect to �tr���. For fixed �tr, hence fixed g1D, the global
minimum of Elong is realized by the exact ground state of
ĤH long, which is the well-known LL Bethe ansatz solution
[2]. One may instead use some simpler variational trial
state for �long, obtaining an upper bound to the longitu-
dinal energy Elong 	 N�long. This has then to be minimized
with respect to variation of �tr subject to the normalization
constraint:

��tr
���

tr���
�
@�long
@g1D

�g1D
���

tr���

#tr2���tr��� 	 0; (8)

where the transverse chemical potential #tr is the
Lagrange multiplier for the transverse normalization con-
straint. Evaluation of the functional derivatives leads to the
following generalized transverse GP equation:
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where #tr is to be adjusted so that �tr satisfies the normal-
ization constraint. The solution depends on g1D which in
turn depends on �tr, so the solution has to be determined
by a self-consistent iterative procedure, by making an
initial guess for g1D, evaluating @�long=@g1D at this value
of g1D, solving Eq. (8) for �tr, determining a new g1D from
Eq. (6), and iterating to convergence.

Two of us have previously developed a variational
theory [18] assuming the same toroidal geometry and using
a variational trial state for �long based on the variational
pair theory of many-boson systems [19]. In that case the
transverse GP equation (8) reduces to the previous one, Eq.
(16) of [18], after correction of a typo therein [20]. That
work was devoted to investigation of the BEC-Tonks cross-
over in the 1D regime where the transverse orbital is frozen
in the unperturbed transverse oscillator state, and no trans-
verse GP equation was solved. Here we are concerned with
a different crossover, namely, the 1D-3D crossover, which
depends crucially on the solution of the transverse GP
110402-2
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equation. In the following two sections we shall separately
consider first the case where �long is approximated by the
Girardeau-Arnowitt (GA) variational pair theory [19] as in
[18], which gives accurate results except in the Tonks-gas
regime (1D limit and very large scattering length). Then
we shall work out the solution using the LL theory [2], the
exact ground state of ĤH long. This latter is accurate even in
the Tonks regime, but is more complicated to work out
since the LL energy per particle �LL is known only from
numerical solutions of the nonlinear LL integral equation.

Pair theory solution.—Approximating the longitudinal
energy by the 1D GA pair theory energy, we will first set
�long 	 �P, the expression which we derived in Ref. [18]
and can be written as
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Here K�1
 &� andE�1
 &� are complete elliptic integrals
[21] and f is the Bose-condensed fraction related to the
dimensionless pair theory parameter & through the coupled
equations
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The partial derivative of the pair theory energy has to be
taken before minimization [18] rather than that of the
expression in Eq. (10) which is true only at the minimum

@�P
@g1D

	
n
2
�2
 f2 
 2&f2 � &2f2�: (12)

LL solution.—Next we shall use the LL energy �LL [2],
which is the global minimum of �long with respect to
unrestricted functional variation of �long. It yields, to-
gether with Eq. (8), the best possible variational solution
obtainable with a trial state of form (2):

�h2

m
�LL
g2

	
�gg2
1D

2"2 e�"�; (13)

where e�"� is obtained by solving the Lieb-Liniger system
of integral equations [2]. The partial derivative

@�LL
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2
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is the same regardless of the order in which the expectation
and the derivative are evaluated, unlike in pair theory since
the LL solution is an exact eigenstate of ĤH long and thus
obeys the Hellmann-Feynman theorem.

Numerical results and discussion.—For both pair theory
and Lieb-Liniger theory, the transverse GP equation was
solved numerically using the method of discrete variable
representation [22], a method based on Gauss quadrature
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with a well-defined discrete normalization. Iterating the
solution of the GP equation alternately with the evaluation
of the longitudinal energies lead to self-consistent values
for g1D and �long in both theories. In using LL theory we
used the tabulated values of e�"� in [23] for intermediate
values of " and the limiting expressions in [2] for high and
low values of ". For low ", i.e., for high linear densities,
the energies in both pair theory and LL theory coincide
with the Bogoliubov energy ng1D=2.

In the Tonks limit of completely impenetrable bosons,
all of the atoms are ‘‘fermionized’’ and the energy per atom
is simply the energy of free fermions,

�h2

m
�F
g2

	
�2 �nn2

6
: (15)

We can get a sense of the degree of ‘‘fermionization’’ of the
system by evaluating the ratio �LL=�F. In the Tonks limit
this would be unity, but as the atoms become penetrable the
energy approaches a linear dependence on the density so
that the ratio will approach zero. In Fig. 1 we plot this ratio
(for LL theory) as a function of the density �nn for different
values of the dimensionless quantity mg2=�h3!0 propor-
tional to the transverse trapping frequency !0. In the
same figure we also plot �gg1D 	 g1D=g as function of �nn.
While the plot of �long=�F gives a measure of the impene-
trability of the atoms, the plot of �gg1D provides a measure of
the dimensionality, since �gg1D 	 1 in 1D and decreases as
the system crosses over to 3D. Since g depends linearly on
!0 the actual magnitudes of the densities are different in
the three plots shown in Fig. 1. Along the right axis in Fig. 1
we plot the scaled longitudinal energies computed from
pair theory and LL theory. We see that the density range
where the pair theory energies deviate from the LL ener-
gies corresponds closely to the region where �long=�F starts
to deviate from unity. This is to be expected since pair
theory cannot describe the Tonks regime.

We see that for low values of the transverse trapping
potential as in Fig. 1(a) there is a regime of density where
the gas is one dimensional but not yet a Tonks gas. Pair
theory is valid in this region, and it intrinsically allows for a
‘‘Bose-condensed’’ fraction f which has the more general
interpretation as the nontrivial fraction of atoms in the
ground state. Thus in this regime we should see a 1D
condensate, in the sense defined earlier. However, as we
increase the transverse trapping potential we see that the
region where such a 1D condensate can exist gets narrower
as the curve for �gg1D approaches the curve for �long=�F until
the former is on the left of the latter as we see in Fig. 1(c);
this means that for large transverse trapping potentials
there will never be a 1D condensate and the system will
pass directly from 3D to the impenetrable Tonks-gas re-
gime. This is clearly illustrated in Fig. 2; using �gg1D 	 0:5
as the criterion for crossover from 1D to 3D and
�long=�F 	 0:5 as the criterion for crossover to the Tonks
gas, we plot the scaled densities at the crossover points as a
function of the transverse confinement strength measured
by mg2=�h3!0. The triangular region between the two
110402-3
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are shown for three different strengths of the transverse trap
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dimensionless quantity as follows: (a) mg2=�h3!0 	 10
2,
(b) mg2=�h3!0 	 102, and (c) mg2=�h3!0 	 108. Note that the
scale of actual linear densities n differs in the three plots since g
is different for each plot.
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curves on the left of their point of intersection roughly
defines the range of scaled densities and transverse trap
frequencies over which a 1D condensate can exist. On
the right of the point of intersection the trap strength is
too high.

In conclusion, we have used Lieb-Liniger theory as well
as pair theory to study the crossover of an axially homoge-
neous 3D Bose-condensed system to effective 1D and
eventually to an impenetrable regime. We have evaluated
the densities at which the system crosses over from 3D to
1D and then to a Tonks gas for different transverse trap
frequencies. We have demonstrated that for weak trans-
verse confinement there is a physically allowed regime
where a 1D axially homogeneous condensate can exist,
while for sufficiently high transverse confinement the only
possibilities are a 3D condensate or a Tonks gas.
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