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Peeling Process in Living Cell Movement Under Shear Flow

Emmanuel Décavé,'? Daniel Garrivier,' Yves Bréchet,® Franz Bruckert,” and Bertrand Fourcade'
YCEA/Grenoble, DRFMC/SI3M, 17 rue des Martyrs, 38054 Grenoble cedex 9, France
2CEA/Grenoble, DBMS/BBSI, 17 rue des Martyrs, 38054 Grenoble cedex 9, France

SENSEEG, LTPCM, 38042 Domaine Universitaire de Saint-Martin d’Héres, France
(Received 27 November 2001; published 14 August 2002)

We present a direct optical observation of the behavior of the contact area between a living cell
(Dictyostelium discoideum) and a solid substrate under shear flow. It is shown that the membrane is peeled
off the substrate. The relationship between the peeling velocity and the applied force is obtained
experimentally and explained from the behavior of individual adhesion bridges. The dissipation occurring
during the peeling process is explicitly calculated in terms of out-of-equilibrium thermodynamics.
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Since the publication of Bell’s seminal paper in 1978
[1], many experimental [2,3] and theoretical works [4,5]
have been dedicated to cell adhesion. From the biological
point of view, cell-cell and cell-substrate adhesion is of
central importance, since many adhesion proteins are also
receptors, eliciting a cellular response upon ligand binding.
From the physical point of view, the statistical nature of
adhesion bridges is responsible for original and interesting
behaviors. One common aim of biological and physical
studies consists in determining the molecular properties of
the adhesion bridges in situ, using both experiments and
modeling [6,7]. Determining the strength of adhesive
bridges requires applying external forces to the cells
[8—10]. For example, [11] recently related the macroscopic
adhesion energy to the properties of molecular bonds using
an equilibrium statistical mechanics formulation. But both
single molecule experiments and theoretical works
[12-16] have emphasized that bond rupture is a nonequi-
librium process revealing the importance of the kinetic
properties of bond breakage.

The purpose of this paper is to report direct experimental
observation of cell movement under shear flow at the scale
of the individual cell. We will show that these observations
are consistent with the peeling hypothesis introduced in
[10] to describe first order kinetics cell detachment assays.
An explicit calculation of the peeling velocity as a function
of the external force is presented, and compared with
experimental data. Orders of magnitude for molecular
parameters will be deduced from this analysis. Moreover,
it will be shown that this model can be interpreted as a
phenomenon of fracture propagation, as in the layered
materials [17]. The dissipation will indeed be related to
the fracture velocity, and explicitly calculated in the high
velocity limit.

The experiments were performed using the model uni-
cellular organism Dictyostelium discoideum [18]. Forces
are applied using a lateral flow chamber assay, described in
[19]. Cells are spread on a glass plate and submitted to a net
shear force generated by fluid flow in the space e between
the glass plate and the upper surface. The force is deter-
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mined by measuring the volumetric flow rate D, and the
cell projected area S, using the classical Poiseuille-flow
relation F = 6DnS/le* (7 is the water viscosity and [ is
the width of the chamber). Cell preparation, glass treat-
ment, and fluid composition are described in detail in [10].
The transparency of this setup allows microscopic obser-
vation during application of the flow. The contact area
between the cell and the glass plate is imaged using re-
flection interference contrast microscopy (RICM) [9,20]. A
first qualitative observation indicates that peeling is indeed
the mechanism leading to cell detachment under shear
flow, as shown by the reduction of cell-substrate contact
area while progressive detachment proceeds (see Fig. 2).
To be more quantitative, histograms of the instantaneous
velocities at the cell’s rear are plotted for different values of
the local force F; applied on the contact line. As schema-
tized in Fig. 1, the region where the membrane leaves the

FIG. 1. A cell adhering on a solid substrate is submitted to a
steady shear flow stress. Imaging the cell allows one to measure
the velocities of the rear v,, the front v, and the center of mass
v. In the 1D peeling model, the margin of the cell is modeled as a
circle of radius R.. Under the action of the external force, the
circle rolls and the adhesive bridges are stretched and detached.
The width of the adhesive belt is £. ¢R3 is the moment with
respect to the contact line.
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FIG. 2. RICM observation of a Dictyostelium discoideum cell
under shear flow. The arrow indicates the direction of the flow.
Time between images is 45 s (40X magnification). To evidence
the peeling process, the contour of the cell-substrate contact area
is reported on the right panel. The white dot represents the
position of the rear front (the black spot in the upper left corner
of the third picture is the image of an other cell moving in the
direction of the flux). The advancement of the rear front has been
determined by measuring the position of the outermost contact
point.

substrate is curved, with radius of curvature R, [9]. F| is
thus evaluated by requiring the equality of the moment of
the hydrodynamic force and the moment of the local force
with respect to the contact point O. This scaling argument
gives F;R, = {FR, where we have introduced an effective
{ coefficient to account for the active response of the cell
which is proportional to the external force in the low flux
regime. For Dictyostelium, R, =~1 um [9] and R =
6.2 um (see Fig. 2). Observation shows that the velocity
of the rear contact line exhibits fluctuations with a well-
defined mean value. Results for two values of the local
force are given in Fig. 3. Moreover, in the peeling con-
dition reported here, the front velocity v, is very close to
the rear velocity v,. Consequently, the cells move over
large distances (of the order of 50 xm) before leaving the
substrate. This allows one to estimate the rear velocity v,
by that of their center of mass v, which can be measured
more easily on a whole cell population, thus increasing the
statistics of this velocity measurement. Figure 4 shows the
position of the rear front for a single cell. The curve scales
with time in contrast to the forefront which moves in a
cyclic way by extending pseudopods. The nonlinear rela-
tion v versus F; obtained using this method, when varying
the external force on the cells, is presented in Fig. 5.
Figure 5 compares this result with the theoretical ex-
pression of v versus F; derived in the frame of the peeling
model presented below [21]. This model deals with the
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FIG. 3. Histograms of rear instantaneous velocities at two

values of the applied local force F;. The histograms for one cell
are fitted with Gaussian distributions as a guide for the eye.

108101-2

30 m
25y e .
254 20 R
- 15 v + * % o
E:‘ 20 1 150 V ..... A .t a
= 0 b A o
E 15 50 100 150 ¢
[ . 4
§ [ ¢
% 10 A ot ¢
5 N L4 ¢
5 ot ¢
0+ , , ,
0 50 100 150
Time (s)

FIG. 4.  Plot of the position of the rear front as a function of
time. Note that the position scales almost linearly with time and
that the cyclic component corresponding to the extension of
pseudopods at the forefront is a small perturbation on the scale of
the figure. Inset: Plot of the position of the forefront as a function
of time. Each step indicated by an arrow corresponds to the
extension of a pseudopod.

problem of determining the velocity v of the contact point
O between the cell membrane and the substrate as a
function of the applied force F; (see Fig. 1). Since D.
discoidum adhesion to glass depends on two adhesion
molecules [22,23], the cell adhesion is modelized by dis-
crete molecular bridges. The passing fluid exerts a net force
on the cell membrane, which is transmitted to the extreme
margin of the cell facing the flow. The region where the
plasma membrane leaves the substrate, called the adhesive
belt, is curved, as observed in [9]. Our simple 1D model
consists in modeling the adhesive belt as a part of a circle,
with constant radius of curvature R,. The circle rolls under
the action of F, peeling the membrane off the substrate. In
the simplest approximation, an adhesive bridge is modeled
by a spring of stiffness k, with a noncovalent bond at its
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FIG. 5. Peeling front velocity versus local applied force. ¢
represent data obtained by the measurement of the mean velocity
v of the center of mass of 20 cell panels, [] represent data
obtained by velocity measurement of the cell’s rear velocity v,
on three cells. The solid curve is obtained using Eq. (1). A good
fit is obtained with vy = 0.01 um/s and Fy, = 240 pN.
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end. The local force exerted on the molecular attachment is
f, = kz, where z is the extension of the spring. The
interaction between this adhesive bridge and the substrate
is modeled by a two states system, anchored and free,
separated by an energy barrier. The kinetics of the adhesive
bridge is governed by on and off rates, depending on the
force f), applied to the chemical bond [1], namely, k,,(z) =
kS exp(—Akz/kpT) and  ko(z) = KOy exp(Akz/kpT)
[24], where kO, i o exp(—AUopyofe/kpT). AUgyofr are
the values of the energy barriers seen, respectively, from
the free (anchored) state, and A is the range of the inter-
action responsible for molecular adhesion. When the circle
rolls under the action of F;, adhesive bridges, which were
previously under the cell in the contact zone, are progres-
sively stretched in the adhesive belt. The number of adhe-
sive bridges in the adhesive belt depends on F; and v.
Neglecting lateral diffusion, the kinetics equation for an-
chored bridges is 9,n,(z) = kon(2)(ng — 1) — koge(2)ny,
where the total density of adhesive bridges ng is defined
by ny =n, + ny and ny is the density of free bridges.
Neglecting the attachment because of the exponential fall-
off of kg,(z) yields to 9,n,(z, v) = —koe(2)ny (2, v).
Solving this equation [25], one obtains the expression
of n, in the large velocity limit n,(v,x) =
nY exp[— %(%)e("/fo)z], where &[2(R kzT/kA)]V/2. In
this formula, v is a characteristic velocity given by vy =
Ko €0/2. So, in the limit v 3> vy, n;, has the shape of a step
function, with a rapid falloff to O at a characteristic distance
&(v) which defines the width of the adhesive belt. From
ny(v, x), the following autocoherent equation is obtained,
defining the size of the adhesive belt: v/v, =
[£(v)/€&ylexplé(v)/ €)% In the large velocity limit, this
leads to £(v) = &[In(v/vy)]"/2. ¢ increases logarithmi-
cally with the peeling velocity v. Assuming that the circle
rolls at a constant velocity, the balance of the moment of
the restoring force due to the anchored bridges with the
moment of the external local force F;, with respect to the
contact point O, gives F; = k\/2/R. [T n,(v, 2)7%/%dz.
This equation, combined with the expression for n,(v, x),
allows the determination of the relation v(F;). Ap-
proximating the distribution n,(x, v) by a step function
between 0 and &(v), the former equation leads to the
expression of the size of the adhesive belt as a function
of the external force & = (SRE/nOk)I/“FII/4 and to the
expression of v as a function of the external force in the
thermoactivated regime:

exp[(F,/4Fp)"/?]

V) =0 a1

, )

with Fy = (ny/8k)(kgT/A)?>. Taking ¢ =~ 1 is enough to
get orders of magnitude and this gives v, = 0.01 um/s
and F, = 240 pN (see Fig. 5). Typical values of the con-
stants appearing in vy and Fy are R, = 1 um [9], k =
1073 N/m [21], A = 1 A [24], and give orders of magni-
tude for k% = 1072 s and ny = 10’-108 m~! in agree-
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ment with previous literature [1,7]. Precisely, we show that
measuring the velocity of the contact line of a single cell
under external force as in Fig. 5 agrees with the results of
macroscopic cell detachment assays which measure the
first order kinetics of detachment for a whole population.
This allows the measurement of the two important molecu-
lar parameters, namely, kgff and ng. It is noteworthy that
the parameter F,, corresponds precisely to the scaling
stress 0y =~ (Fy/S)(R./R) (S =120 um?> being the
mean cell projected area), determined independently in
Dictyostelium discoideum detachment experiments from
glass (see [10]).

In this last section, we calculate the dissipation occur-
ring during the peeling of the membrane, and interpret this
phenomenon in the more general frame of fracture phe-
nomena. The fracture’s tip has a velocity v under the action
of F,. Let G be the work needed to extend the fracture
over a unit area and W,q, = nyAG the reversible work
required to separate the cell from the substrate reversibly
without dissipation. Following de Gennes [17], the dissi-
pation due to the movement of the contact line can be
written, in terms of out of equilibrium thermodynamics,
as T4 = (Gr — Woan)v. Gr — Wy, is interpreted as a
generalized thermodynamics force and v as the corre-
sponding generalized conjugate flux, which characterizes
the response of the fracture to the force. In the low flux
regime, a linear relationship between flux and force is
generally postulated, as Gy — W4, = mv. But as pointed
out in [17], a more general nonlinear relationship has to be
considered, such as

Gr — Wy = d(v), )

where @ is a nonlinear function of v.

In order to obtain the expression of G, we consider the
energy variations due to the steady-state movement of the
contact line at a velocity v under the action of F;. For an
arbitrary displacement 6x of the contact line along x, the
work of the external force is §W = F,;6x. All of the bonds
located between &(v) and £(v) — Sx detach, absorbing an
energy 6W, = ngAGédx and dissipating the elastic energy
60U, = —2npkzm,xAdx (see [26]) to the leading order
in ox. The maximum extension z,,,, of a bond corresponds
to the extension of the most stretched bond, which
scales as  Zpu = £2(v)/2R.. This leads to 8U,, =
—nokA{[£%(v)]/R.}8x. Moreover, the elastic bonds are
stretched in this process. The corresponding energy cost is
SU, = f§<”) ny(x, v) L kz?dx — ]i(g){‘ﬁx ny(x, v) S k2?dx =
(ngk/8R%)&E*(v)6x to the leading order in §x. The conser-
vation of energy implies oW = 6U,; + 6U,; + 6W,
leading, for an arbitrary displacement 6x, to F;,—
noAG = (nok/8R%)EHv) — ngkAE*(v)/R,..  Replacing
&(v) with its expression in the high velocity limit, one
gets Fl - I’loAG = Fo(lnv/v0)2 - l’lokBT(an/‘Uo). As Fl
is the force applied on the fracture per unit of fracture’s
length, the work done by the external force in a fracture’s
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displacement 6x scales as Gydx = F;dx resulting in G =
F;. We obtain the equivalent of Eq. (2):

4kA% 1
e
5T Inv/v,

With the previous given values of the parameters, and
taking v = 10v,, one obtains 8kAZ?/[In(v/vy)kzT] =~
1072 in typical experimental conditions [27].

It is interesting to compare the dissipation to the revers-
ible  work, by calculating (G — Woan)/ Waan =
[(kgT)*/(8kA*AG)]®(v). Taking AG = kT, one gets
(Gr — Woan)/Waan = 102, showing that, under our condi-
tions, the dissipation is much larger than the reversible
work. The stretching and rupture of the adhesive bonds
in this special case of fracture propagation are thus respon-
sible for a very strong dissipation during the peeling
process.

In summary, we presented new direct observations of the
forced movement of the contact line between a living cell
(Dictyostelium discoideum) and a solid substrate, using
reflective interference contrast microscopy. Cell detach-
ment under these conditions occurs by peeling the mem-
brane off the substrate, as shown by the reduction of the
contact area with time. This observation supports the use of
a peeling model to describe Dictyostelium discoideum cell
detachment under flow [10,21]. The peeling model we
present here points out the fundamental role of the adhe-
sive belt under force. The nonlinear behavior of the contact
line under external force has two origins: (i) the statistical
behavior of the adhesive bridges in the adhesive belt lead-
ing to the strong dissipation during bond rupture, and
(i) the geometry of the adhesive belt, which fixes the
relation £(F) and, consequently, the value of the power
in the exponential term in Eq. (1). It appears that the study
of the kinetics of the contact line allows the determination
of important molecular parameters (k% =~ 1072 s71, ny =
10" m~2).
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matériaux’’ from the Institut National de la Santé et de la
Recherche Médicale and the CNRS-Matériaux, and a grant
“Reconnaissance et adhérence cellulaire”” from the
LP.M.C. (Grenoble).
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