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We show that spin-dependent resonant tunneling can dramatically enhance tunneling magnetoresist-
ance. We consider double-barrier structures comprising a semiconductor quantum well between two
insulating barriers and two ferromagnetic electrodes. By tuning the width of the quantum well, the lowest
resonant level can be moved into the energy interval where the density of states for minority spins is zero.
This leads to a great enhancement of the magnetoresistance, which exhibits a strong maximum as a
function of the quantum well width. We demonstrate that magnetoresistance exceeding 800% is
achievable in GaMnAs=AlAs=GaAs=AlAs=GaMnAs double-barrier structures.
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tively, and �ex is the exchange splitting. As usual, we
will compare configurations with the parallel (ferromag-
netic, F) and the antiparallel (antiferromagnetic, AF) align-

FIG. 1. Schematic flat-band diagrams illustrating the resonant
spin-valve effect
Spin-dependent tunneling in solids has been a subject
of great interest since the discovery of tunneling mag-
netoresistance (TMR) in magnetic tunnel junctions
(MTJ) [1]. Recent advances in heteroepiatxial growth of
GaMnAs [2] and other III-V dilute magnetic semiconduc-
tors (DMS) [3,4] sparked even more interest due to the
scientific and technological applications offered by all-
semiconductor magnetic devices. Among different types
of spin-dependent transport in magnetic heterostructures,
spin-dependent resonant tunneling has been relatively un-
explored theoretically, despite the fact that spin-dependent
resonant tunneling devices (spin-RTDs) have been fabri-
cated. The experiments on spin-RTDs revealed a remark-
able interplay of magnetism, spin-orbit coupling, and
quantum confinement, resulting in pronounced spin selec-
tivity that can be controlled by an external bias or magnetic
field [5,6]. In this Letter we demonstrate that the spin-
dependent resonant tunneling in double-barrier magnetic
junctions can dramatically enhance magnetoresistance as
compared with traditional single barrier junctions.

Using a one-band spin-polarized model [7] as a generic
example, we will show that at certain conditions the spin-
RTD may act as an almost ideal spin valve, allowing for the
resonant tunneling in the majority spin channel only, and
only for the parallel (ferromagnetic) alignment of the
magnetizations in the emitter and collector. Even though
one-band models of spin-RTDs have been considered in
the literature [8,9],the resonant spin-valve effect described
below has never been discussed, to the best of our knowl-
edge. We will consider small biases, where only the elec-
trons at the Fermi surface contribute to the tunneling
current, and will take into account elastic processes only.
The double-barrier structure in question is shown in Fig. 1,
where w and L are the barrier and the well widths, respec-
0031-9007=02=89(10)=107205(4)$20.00
ments of the magnetizations in the leads, and define
tunneling magnetoresistance as TMR � �GF=GAF � 1� �
100%, where GF�AF� are the linear-response conductances
[7,10] for the F and AF configurations, respectively.
Figure 1 presents the situation where the geometric pa-
rameters of the double-barrier heterostructure (DBH) are
tuned in such a way that the resonant level ER in the well
falls into the energy interval 0<ER < �ex=2, where the
density of states for the minority spins in the emitter is 0.
The resonant conditions for the F configuration (Figs. 1(a)
and 1(b)) are
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where signs ‘‘�’’ and ‘‘�’’ correspond to the majority and
minority spin channels, respectively. The similar condi-
tions for the AF configuration (Fig. 1(c) and 1(d)) read
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Here m� is the effective mass, kz;L�R� is the wave-vector
component in the direction of the current in the emitter
(collector), ER � EF � �h2k2

k
=2m�, ~kkkk is the inplane wave-

vector component (assumed to be conserved), and EF is
Fermi energy. The resonant level contributes to the con-
ductance if these conditions are satisfied along with the
obvious requirement k2

z > 0. Analysis of Eqs. (1) and (2)
shows that in the case when 0<ER <�ex=2 the resonant
level contributes to the conductance only through the
majority channel in the F configuration. If this is the only
resonant level under the Fermi level of the emitter, the
conductance in the AF configuration is purely nonresonant
and the system works as an almost ideal spin valve even
though the ferromagnetic leads are not half-metallic.
Another look at this effect is shown in the inset in Fig. 2,
which is a graphical representation of Eqs. (1) and (2). The
Fermi circle corresponding to the resonant level lies be-
tween the majority and minority Fermi spheres. Thus the
lateral momentum conservation will allow for resonant
tunneling in the majority channel only.

To further illustrate our point we use the Breit-Wigner
formula (i.e., the Lorentzian approximation) for the trans-
mission coefficient in the vicinity of the resonance:

T��� ~kkk; E� � T��;NR � TR � ��" � ��;F; (3)

where T��;NR describes nonresonant tunneling in the spin
channel � for configuration � � F�AF�, and
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FIG. 2 (color online). TMR of the one-band spin-RTD as a
function of the quantum-well width. Inset: Fermi surfaces in the
emitter (solid lines) and quantum well (dashed line) correspond-
ing to the maximum TMR.
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TR� ~kkk; E� �
�2

�E� ER � �h2k2
k
=2m��2 � �2 (4)

is the resonant part of the transmission coefficient and �h=�
is the elastic lifetime of an electron in the well. The
conductance at zero-temperature can be calculated by the
Landauer’s formula [7,10]:

G �
e2S

�2�3��h

Z
d2kkT� ~kkk; EF�; (5)

where S is the cross-sectional area of the device.
Substituting Eqs. (3) and (4) into Eq. (5) we obtain

G� �
e2S
4��h

�
kF

4�w
A� exp��4kFw� �

m�

�h2 ���;F

�
; (6)

where kF is the Fermi wave vector, and w is width of the
barrier. The prefactor A� depends on the relative directions
of the magnetizations. The first term describes the non-
resonant part of the conductance [7,11]. It decays expo-
nentially with the barrier width w. The second (resonant)
term does not contain the factor exp��4kFw�. As a result,
the magnetoresistance grows exponentially with the barrier
width:

TMR � �TMR�NR � � exp�4kFw�=EAF; (7)

where the last term describes resonant enhancement of
TMR, and EAF is a constant with the units of energy.
Formula (7) has no resemblance with the Julliere’s formula
[1]. It shows that TMR can be made exponentially large by
tuning the parameters of the nonmagnetic part of the
junction rather than the spin polarizations in the leads.

To corroborate the qualitative conclusion based on the
Breit-Wigner formula we calculate the conductance with
the exact transmission coefficient for the one-band model.
The results are shown in Fig. 2. They correspond to EF �
80 meV, �ex � 50 meV, and m� � 0:5m0. TMR as a
function of the quantum-well width L displays a very
pronounced maximum which can reach up to 104%. The
maximum can be explained as follows: the sharp increase
of the magnetoresistance is due to the fact that the lowest
resonant level in the well falls into the interval 0<ER <
�ex=2. As soon as the second resonant level becomes lower
than the Fermi energy, both the F and AF conductances
contain resonant parts, plus the lowest resonant level
becomes narrower and does not play a crucial role any-
more. As as result, TMR starts decreasing.

The one-band model provides good qualitative insight
into the problem, however it cannot be used for a quanti-
tative description of tunneling in III-V DMS where the
tunneling carriers are holes and the complexity of the
valence band and the spin-orbit coupling play very impor-
tant roles. Below we present more realistic calculations of
a GaMnAs-based DBH, taking these factors into account.
GaMnAs is a p-type ferromagnetic DMS with maximum
Curie temperature 110 K. GaMnAs DBH were fabricated
107205-2
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FIG. 3 (color online). TMR of GaMnAs=AlAs=GaAs-based
spin-RTDs as a function of the quantum-well width. Upper inset:
Fermi surfaces in the emitter (solid) line and quantum well
(diamonds) corresponding to the maximum TMR. Lower inset:
schematic band diagram.
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and giant tunneling magnetoresistance was observed in
trilayer [12] and double-barrier structures [13]. Spin-
dependent resonant tunneling in GaMnAs-based RTDs
was also observed [6].

Our calculation of the transmission coefficient is based
on a multiband transfer matrix technique [14]. We start
from the hole Hamiltonian of a magnetic semiconductor
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(8)

where I is 2  2 unit matrix, ~�� � ��x; �y; �z�, �� are the
Pauli matrices, n̂n is the unit vector in the direction of
magnetization,  so-spin-orbit coupling constant, and

H�
h � �$�0 � �$�1 � 4$�2 �k
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X
�
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where � � fx; y; zg, L� are l � 1 angular momentum op-
erators, and $�i are Luttinger parameters. The parameters
$�0 , describing the exchange splitting at ~kk � 0, can be
expressed through the constant % of the p� d exchange
interaction: $"

0 � $#
0 � 3�ex �

5
2%N0x, where �ex is

the exchange splitting of the light holes (LH) at the
�-point, N0 is the number of cations per unit volume in
GaMnAs, and x is Mn concentration. The constant %N0 ’
�1:2 eV according to Dietl et al. [2] which leads
to �ex � 50 meV at T � 0 and x � 0:05. Neglecting the
spin dependence of $�i�0 will reduce our hole Hamiltonian
Hh to a more conventional ‘‘Kohn-Luttinger + exchange’’
mean-field Hamiltonian used for dilute magnetic semicon-
ductors (e.g., [2]). In the nonmagnetic GaAs and AlAs
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regions we used the standard Kohn-Luttinger hole
Hamiltonian [14].

We represent the device as a stack of two-dimensional
flat-band interior layers with thickness wn and potentials
Vn, starting at z0 � 0 and ending at zN � Ld (where Ld is
the length of the device), plus two semi-infinite leads.
Below we will useN � 3 [see Fig. 3 (inset)]. The thickness
of the nth interior layer is wn � zn � z0. The 0th and �N �
1�th layers are the semi-infinite emitter (z < 0) and collec-
tor (z > Ld). Substituting kz ! �i�h@=@z one can solve the
Schrödinger equation in the nth flat-band region:
�n�z� �
Xnb
��1

�A�
n;�v�kn;�� exp�ikn;�z� � A�

n;�v��kn;�� exp��ikn;�z��; (10)
where nb is the number of bands, nb � 6 for the
Hamiltonian (8), and kn� are the generalized complex
eigenvalues of kz in the nth flat-band region. These eigen-
values, which always occur in pairs 	kn�, and correspond-
ing eigenvectors v�	kn�� can be found from the equation

�H�2�
n � ~kkk�k

2
n �H�1�

n � ~kkk�kn �H�0�
n � ~kkk� � E�v � 0; (11)

where we took advantage of the fact that the Hamiltonian
(8) can be represented as a quadratic function of kz with
‘‘coefficients’’ H�i�

n that are nb  nb matrices. The matrices
H�0�
n contain a constant energy shift (barrier height) of

�0:55 eV in the AlAs regions [15]. Equation (11) can be
reduced to the regular eigenvalue problem for a non-
Hermitian matrix [16,17]. In order to formulate boundary
conditions in the matrix form we need to define the current
operator [16] as Jz�kn�� � �2H�2�

n kn� �H�1�
n �=�h.

The set of the coefficients A�
n� corresponds to the sol-

utions that are either traveling waves carrying the proba-
bility current from left to right or evanescent waves
exponentially decaying to the right (i.e., in the positive
direction of z). The corresponding eigenvalues kn� satisfy
the following conditions

kn� 2 fA�g :
if Im�kn�� � 0 and jn� > 0;
or Im�kn�� > 0;

(12)

where jn� � Re�v��kn��Jnz�kn��v�kn��� is the expecta-
tion value of the probability current. Respectively, the set
fA�g contains all ‘‘right-to-left’’ eigenvalues �kn�. The
matching conditions at the interface zn (n � 0; ::; N), cor-
responding to the continuity of the wave function and the
current can be expressed in matrix form as follows:

/nfn�zn�An � /n�1fn�1�zn�An�1; (13)

where /n is the matrix comprised of 2nb eigenvectors
v�kn��
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VOLUME 89, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER 2002
/n �
: v�kn�� : v��kn�� :
: Jz�kn��v�kn�� : Jz��kn��v��kn�� :

� �
;

(14)
and fn�%�z� � exp�ikn�z���%.

We adopt the following convention for enumeration of
the lead layers and all related quantities: 0 � L (emitter)
and N � 1 � R (collector). The system of linear Eqs. (13)
can be solved as
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where the 2nb  2nb transfer matrix

M � /�1
L

�YN
n�1

/nfn��wn�/�1
n

�
/RfN�1�zN�

is partitioned according to the criteria (12) in the emitter
(L) and collector (R). The boundary condition A�

R � 0
defines the transmission matrix t�% in terms of the nb 
nb matrix M� as

t�% �

8><
>:

�����������������
jR%=jL�

q
�M��

�1
%�; if jR%�L�� > 0;

and ImkR%�L�� � 0;
0; otherwise;

(16)

and the transmission coefficient entering Eq. (5) can be
calculated in a usual way [10,18] as T� ~kkk; E� � Tr�tyt�.

Figure 3 shows zero-temperature TMR in GaMnAs-
based DBH as a function of the quantum-well width for
the inplane magnetization ~MM k �100�, Fermi energy EF �
150 meV, and �ex � 50 meV [2]. These parameters cor-
respond to 5% (1:1  1021 cm�3) Mn and 1  1020 cm�3

hole concentrations, respectively [2]. TMR displays a
sharp maximum of �800% at the well width �40 *A and
barrier width �20 *A. Even though the value of TMR is not
as large as in the one-band case it is still extremely high.
The reason for the reduction of TMR (as compared to the
one-band case, Fig. 2) is the spin-orbit coupling. Namely,
as we see from the inset to Fig. 3 the minority heavy hole
(HH) band is empty. As a result, we have only three (rather
than four) Fermi surfaces in GaMnAs (see Fig. 3, inset). In
this situation one would expect zero transmission coeffi-
cient and conductance in the HH channel for antiparallel
alignment of the magnetizations. However, due to the spin-
orbit coupling, this (spin-flip) transmission is not zero for
both HH and LH channels. In fact, it is rather significant
especially when ~kk is perpendiculr to the magnetization.
The suppression of the spin-flip processes involving LH
states in the region where the Fermi surface of the quantum
well lies in between LH and HH Fermi surfaces ensures,
nonetheless, strong enhancement of TMR which depends
107205-4
exponentially on the barrier width. Another important ob-
servation is related to the orientation of the magnetization
with respect to the interface. We did not find any enhance-
ment of TMR for the magnetizations perpendicular to the
layers. This is a direct consequence of the strong anisot-
ropy of the hole Fermi surface in GaMnAs [2].

The predicted value of the zero-temperature magneto-
resistance for the one-band model is enormous ( � 104%,
see Fig. 2). For more realistic multiband calculations with
the spin-orbit interaction taken into account, the predicted
value of TMR is smaller, but still very large ( � 800%).
Because of this fact we expect that the strong spin-
valve effect can be observed experimentally in double-
barrier magnetic heterostructures. A promising candidate
would be a structure based on GaMnN, where both higher
Curie temperature and smaller spin-orbit coupling are ex-
pected [2].
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