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Luxemburg-Gorky Effect Retooled for Elastic Waves: A Mechanism and Experimental Evidence
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A new mechanism is proposed for the linear and amplitude-dependent dissipation due to elastic-wave-
crack interaction. We have observed one of its strong manifestations in a direct elastic-wave analog of the
Luxemburg-Gorky effect consisting of the cross modulation of radio waves at the dissipative nonlinearity
of the ionosphere plasma. The counterpart acoustic mechanism implies, first, a drastic enhancement of the
thermoelastic coupling at high-compliance microdefects, and, second, the high stress-sensitivity of the
defects leads to a strong stress dependence of the resultant dissipation.
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It is well known [4] that for homogeneous solids the
intrinsic elastic nonlinearity due to the anharmonicity of

ture mechanics. This strong effect of the cracks is due to
their high compliance, that is quantitatively characterized
For many nonlinear effects typical in optics and plasma
physics direct acoustic analogies are known. In particular,
such effects have been observed in bubble-containing
liquids, whose strong acoustic nonlinearity is due to the
coupling to soft oscillators, the bubbles. Examples are
wave phase-conjugation, stimulated scattering, and maser
effects [1]. However, no acoustic analogies are known for
the Luxemburg-Gorky (LG) effect, which represents one of
the pioneering observations in nonlinear wave interactions
[2]. It consists of the transfer of the modulation from the
radiation of a powerful radio station (originally,
Luxemburg and Gorky-city stations) to another carrier
wave. This cross modulation is caused by variations in
the absorption of the ionosphere plasma, which are induced
by the amplitude-modulated stronger wave at frequen-
cies on the same scale as the modulation frequency. The
stronger wave perturbs the electronion and electron-
molecule collisions in the plasma, thus influencing the
dissipation and, in general, the wave velocity. The induced
variations in the dissipation produce pronounced amplitude
modulation of the weaker wave, whereas the role the
complementary perturbations in the weaker wave velocity
is of secondary importance for the considered phenomenon
[2,3]. A majority of the later nonlinear research for waves
of different nature focused, however, on the effects of
reactive, rather than dissipative nonlinearities. In this
Letter, we propose a physical mechanism for a dissipative
nonlinearity due to the elastic-wave-crack interaction.
Owing to the intrinsic high compliance of narrow cracks
and interface contacts they both are very effective centers
of elastic energy dissipation, and even relatively moderate-
amplitude waves may significantly affect their state, thus
strongly influencing the absorption. We will show that
efficient interactions of ultrasonic or seismic waves very
similar to the LG effect are possible in crack-containing
solids. We believe that the mechanism should be rather
general and applicable to many rocks and other micro-
structured materials.
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the interatomic potential is normally very weak, at least for
strains much less than the damage or plastic yield threshold
(typically "dmg � 10�4 � 10�2 in strain). However, during
the last few years, relatively low-amplitude nonlinear-
elastic effects have been intensively studied, such effects
being readily observed at strains "� 10�6 � 10�5 in
rocks, fatigue-damaged metals, and in other microstruc-
tured materials [4–8]. For these solids, the presence of
defects with highly increased compliance, such as micro-
cracks and microcontacts, is typical. This often results in a
drastic increase in nonlinear elasticity, whereas linear elas-
tic parameters remain only slightly perturbed, which may
be understood by means of instructive models describing
the interplay between the strong strain-concentration at the
high-compliant defects and their small density [9]. Besides
the elastic nonlinearity, due to the relative ease of the
breaking of interatomic bonds, the same defects induce
hysteresis in the stress-strain relation [4–8]. Hysteresis,
in addition to nonlinear elasticity, readily accounts for
amplitude-dependent dissipation for sufficiently intensive
waves. However, some observations were reported [10–12]
on pronounced variations in dissipation of a weak elastic-
wave (at strains down to "� 10�8 � 10�10) induced by
another moderate-amplitude elastic-wave ("� 10�5 �
10�6 � "dmg). This effect on the weaker wave can be
explained neither by reactive nor by hysteretic nonlinear-
ities [11,12] and requires assuming the existence of an
additional, nonhysteretic and nonfrictional, nonlinear-
dissipative mechanism.

Below we describe a physical mechanism for such a
dissipative nonlinearity that should be intrinsic to a wide
class of crack-containing solids. The proposed idea is
based on a few reliably established microstructural features
of these solids together with pertinent macroscopic experi-
mental data on nonlinear-elastic-wave interactions.

First, it is well established that such materials contain
numerous cracks or microcracks, whose strong influence
on material elasticity is appreciated in seismics and frac-
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[13] by their very small aspect ratio d=L� 1, where d is
the crack opening and L is its characteristic diameter. In
order to completely close a crack, it is enough to produce in
the material an average strain roughly equal to the crack’s
aspect ratio [13]. This strain is usually rather small, d=L�
10�3 � 10�4, but nevertheless significantly larger than the
typical strain, "� 10�5 � 10�6, for which the above-men-
tioned pronounced nonlinear-dissipative effects [10–12]
were observed. We stress that these statements do not
depend on details of the crack model (pennylike, tapered,
etc. [13]), and even for asymmetrical and corrugated real
cracks the meaning of the characteristic scales L and d is
quite clear (see Fig. 1).

Further condition and evidence for the generality of this
mechanism comes from numerous direct images of crack-
like defects in rocks and damaged solids, obtained by the
methods of electron-, acoustic-, and atomic force micro-
scopy, which indicate rather complex, wavy, or zigzag
interface shapes even for micrometer-scale cracks. The
cracks often have inner striplike contacts [14,15], as sche-
matically shown in Fig. 1, or these can be small loosely
separated regions, where this type of contact can be easily
created or destroyed. Indeed, at these regions, local sepa-
ration (or interpenetration) ~dd of crack interfaces is much
smaller than average separation d. These contacts are
extremely stress sensitive, since due to the described ge-
ometry they are strongly perturbed by the average strain,
which can be orders of magnitude smaller (roughly d=~dd �
1 times) than the typical magnitude "� d=L� 10�3 �
10�4 required to close the whole crack.

Another crucial point consists in the fact that defects of a
material structure are regions of very effective energy
dissipation even for elastic waves whose length is much
greater than the crack size L. Conventionally, this dissipa-
tion is mostly attributed to friction or adhesion hysteresis at
crack interfaces [16,17]. However, it is physically clear and
recently corroborated by direct nanoscale experiments [18]
that for manifestation of adhesion and friction, mutual
FIG. 1. A crack without and with an inner contact is shown
here schematically. At ~LL ! l a striplike contact reduces to a
pointlike contact.
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displacement at interfaces should exceed the atomic size
a. In this context, for a crack with diameter L, the average
compressional or shear strain " can produce maximal
lateral or normal interfacial displacement [11,17] D�
"L. This estimate does not depend on the details of the
crack model and agrees with the above statement that
compressional strain "� d=L produces D � d, thus clos-
ing the crack completely. On the other hand, the require-
ment D > a determines the threshold strain "th > a=L,
below which the interfacial displacement is of a subatomic
scale. For a typical atomic size a� 3� 10�10 m and a
macroscopic crack with L� 10�3 m, this yields "th �
0:3� 10�6, which should be exceeded in order to activate
frictional and adhesional hysteretic losses. However, even
at much smaller strains, the defects can efficiently dis-
sipate elastic energy due to locally enhanced thermoelastic
coupling. Indeed, near inhomogeneities, unlike the case of
a homogeneous material, wave-induced temperature gra-
dients are determined [19] not by the elastic-wave length,
but by the much smaller defect size L and the temperature
wavelength . When scales L and  coincide, the "global"
(over the whole crack) losses per cycle reach their maxi-
mum. This type of elastic energy dissipation was appreci-
ated in seismics quite long ago, and rigorous analytical
solutions are known for special crack models [20].
Alternatively, without specifying the crack model in detail,
in order to estimate temperature gradients and the respec-
tive losses in the crack vicinity, one may use the approxi-
mate approach known for the case of polycrystals [19]. In
doing so we have derived simplified asymptotic expres-
sions for the losses per cycle in the low-frequency limit
(when L� ), the high-frequency limit ( L� ) and at
the relaxation maximum (when L� ). With an accuracy
of a factor of 2–3 these expressions are

Wdis
LF � 2�!T��2K2=��L5"2; (1)

Wdis
HF � 2�T��K=�C�2	1=���C!�
1=2L2"2; (2)

Wmax
crack �2�T��2K2=�C�L3"2;

! �!L � �=��CL2�; (3)

where! is the wave cyclic frequency, T is the temperature,
� is the temperature expansion coefficient of the solid,
K is the bulk elastic modulus, � is the density, C is the
specific heat, " is the average strain, � is the thermal
conductivity, and !L is the relaxation frequency for defect
scale L. For example, for L� 10�3 m the relaxation fre-
quency!L falls between 10�1 � 1 cycles=s for most rocks
and metals. In the calculation of the low-frequency losses
by analogy with [19] we took into account that crack size L
is the characteristic scale of the transition from zero stress
at the free interfaces to the applied average stress �. The
derivation of the high-frequency expression took into ac-
count that different particular crack models consistently
predict that at average applied stress �, the near-tip stress
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FIG. 2. Schematically shown experimental configuration.
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concentration has a universal form �tip � �=
��������
r=L

p
[21]

(distance r is counted from the tip), and it is just this region
which gives the main contribution to the high-frequency
dissipation. The validity of the approximate expressions
obtained is supported by the good agreement with rigorous
analysis [20].

Analogous estimates for the dissipation at the inner
contact of the crack should take into account that the
external applied stress is distributed between the arc crack-
stiffness and the contact stiffness. The scale of the local-
ization in the depth direction of the near-contact stress is
roughly equal to the contact width l� L [22]. At contacts
that are soft (compared to the arc crack-stiffness) the cor-
responding magnitude of the near-contact stress, �c, is
readily shown to be �c � ��L=l�. These stress-distribution
features, which do not depend on details of the crack and
contact models, suffice for the estimations of the respective
thermoelastic losses, which are similar to Eqs. (1)–(3),
although the high-frequency asymptotic dependence of
the dissipation for contacts is to !�1 instead of !�1=2 for
cracks:

Wdis
LF � 2�!T��2K2=��l2 ~LLL2"2; (4)

Wdis
HF � �2�=!��T��K=C��2 ~LL�L=l�2"2; (5)

Wmax
cont � 2�T��2K2=�C�~LLL2"2;

! � !l � �=��Cl2�:
(6)

Comparison of Eqs. (3) and (6) indicates the striking
result that, for striplike contacts with~LL � L, the maximum
losses at the whole crack and at the small inner contact
have the same magnitude, whereas the relaxation fre-
quency for narrow, l� L, contacts can be 4–6 orders
of magnitude higher and reaches the kHz or even the
MHz band.

These results indicate, in fact, that the widely accepted
opinion as to the low importance of thermoelastic coupling
for seismic wave attenuation requires essential revision
both for the background linear dissipation of low-
strain ("� 10�7 � 10�9) waves and for the amplitude-
dependent dissipation. In particular, Eqs. (1)–(6)
demonstrate that even a single crack with a few soft inner
contacts can contribute to a weakly frequency-dependent
quality factor in the frequency range from fractions of a Hz
to kHz frequencies. Comparison of Eqs. (3) and (6) indi-
cates that even a single inner contact of width l in a larger
crack of size L produces the same dissipation at higher
frequencies as a huge number (thousands and millions) of
tiny cracks of size l. For example, for a reasonable ratio
L=l� 102, even a pointlike single contact with ~LL � l is
equivalent to �L=l�2 � 104 cracks, and a striplike contact
with ~LL � L can dissipate the same energy as �L=l�3 � 106

small cracks. Further, taking into account reasonable crack
densities in the conventional way [20] allows one to readily
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obtain realistic estimates of the magnitude of the quality-
factor in a wide frequency band.

Another essential inference comes from the fact that
quite moderate average strain, say, "� 10�5 � 10�6,
which is too small to perturb the crack as a whole, can
strongly perturb sizes l and ~LL of soft inner contacts.
According to Eqs. (4)–(6) this has a pronounced effect on
the dissipation of a weaker probe wave, though neither
adhesion-hysteresic, nor frictional losses are important for
such a weak wave. In contrast, the complementary varia-
tion in material elastic moduli may remain very small,
since the stiffness of such contacts is very low. Thus in
crack-containing solids, favorable conditions should occur
for the direct elastic-wave analog of the LG effect, since
perturbation of the inner crack contacts by a moderate-
amplitude wave via the considered mechanism can notice-
ably affect dissipation for another weaker wave, just as in
the case of the radiowaves in the ionosphere [2,3].

We have built a setup allowing for an instructive experi-
mental demonstration of the acoustic LG effect in the form
of the cross modulation of two longitudinal modes in a
glass rod containing three corrugated thermally produced
cracks 2–3 mm in size (Fig. 2). In a reference rod without
cracks, the modulation sidelobes (existing due to residual
parasitic nonlinearities) were 25–40 dB lower than shown
in Fig. 3(a). Resonance curves for the probe wave
[Fig. 3(b)] demonstrate that primarily the dissipation, not
the elasticity, is affected by the stronger wave. Magni
tudes and frequencies, at which the observed amplitude-
dependent variations in dissipation were observed, agree
well with estimates based on Eqs. (4)–(6). As argued
above, for small enough strains "� 10�8, estimated dis-
placements "L of adjacent crack interfaces are subatomic
in scale, so that neither hysteretic nor frictional effects can
105502-3



FIG. 3. Experimental observation of the elastic wave LG
effect. (a) Modulation spectrum of weak second mode near
11 kHz with "� 10�8 by a stronger ("p � 10�6) first mode
wave with carrier frequency near 3.6 kHz and slow amplitude
modulation at 3 Hz. The inset shows the relative levels of the
stronger and the weaker waves. (b) Resonance curves for the
probe wave at different stronger-wave levels, clearly illustrating
a greater than 10% variation in the probe mode quality-factor. In
contrast, the resonance frequency shift is hardly noticeable. The
inset shows the same curves in normalized form.
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be important for the probe wave dissipation. Indeed, care-
ful experimental study of the amplitude dependencies for
the observed modulation confirmed linear character of the
weak wave dissipation. Quantitatively, estimates based on
Eq. (6) and typical parameters for glass show that even a
single contact-containing crack of a few millimeters in size
suffices to explain the observed 10–12% variation in the
initial magnitude of the quality factor of about 300–350 for
the probe wave. In this simple experiment we have used a
transparent material in which the cracks are easily visible.
Their parameters may be directly and nondestructively
estimated. These cracks are the only defects present, and
there is no doubt that only their presence is responsible for
the observed effects. Independent evidence for the formu-
lated mechanism comes from data on the variation in
dissipation of the weak wave produced by the stronger
one, which were recently reported in [11,12] for copper
aged by strong annealing and sandstone.
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Since the described defects occur in a vast class of
solids, we believe that the proposed mechanism of strong
enhancement of coupling of thermal phonons and elastic
waves will be found to operate widely, in particular,
both for the dilatation strain responsible for conventional
thermoelastic dissipation and for shear modes. The essen-
tial feature of the mechanism considered is that unlike
many other nonlinear-elastic effects, even quite moderate
amplitude ("� 10�6 � 10�5) waves can induce in another
probe wave strong amplitude variations, up to tens of
percents in magnitude. We hope that the presented findings
will motivate new experiments. The corresponding effects,
including the LG modulation, should find diagnostic
applications in basic solid-state studies, in seismics, and
in nondestructive testing.
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