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Poiseuille Advection of Chemical Reaction Fronts
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Poiseuille flow between parallel plates alters the shapes and velocities of chemical reaction fronts. In
the narrow-gap limit, the cubic reaction-diffusion-advection equation predicts a front-velocity correction
equal to the gap-averaged fluid velocity �. In the singular wide-gap limit, the correction equals the midgap
fluid velocity 3�=2 when the flow is in the direction of propagation of the reaction front, and equals zero
for adverse flow of any amplitude for which the front has a midgap cusp. Stationary fronts are possible
only for adverse flow and finite gaps. Experiments are suggested.
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that adverse Poiseuille flow through wide gaps has no
effect whatever on the front velocity, although such flow

The narrow-gap limit � ! 0 can be studied by expand-
ing in even powers of � according to c � c�0� � c�2� � . . .
The convective transition for reaction fronts ascending
in narrow cells has enjoyed considerable attention [1–4].
The associated dimensionless cubic reaction-diffusion-
advection equation [4,5],
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accurately describes the propagation of autocatalytic
iodate-arsenous acid reaction fronts, and admits an ana-
lytical soliton solution for a flat advection-free front. From
left to right, the terms in Eq. (1) give the time rate of
change of the catalyst concentration c�x; t�, the rate of
catalyst advection by the fluid flow, the rate of catalyst
diffusion, and the cubic rate of catalyst production by the
chemical reaction.

The Navier-Stokes equations demand that the 2D flow
between parallel no-slip plates at x � �1 assume the
dimensionless Poiseuille velocity profile [6]
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where x̂x � �vv � 0. To simplify calculations of the convective
transition, previous researchers [1,4] replace v by its gap
average �vv and ignore the x dependence of c in Eq. (1).
These approximations imply a local front velocity u � 1�
� with a correction � � p̂p � �vv equal to the dimensionless
component of the average fluid velocity in the direction p̂p
of propagation of the front in the y-z plane. Here, � > 0
implies supportive Poiseuille flow in the direction of
propagation of the chemical reaction front, � < 0 implies
adverse flow in the opposite direction, and � is the ratio of
the gap half-width to the reaction front thickness.

In this Letter, we show that these approximations are
valid only in the � ! 0 and � ! 0 limits, and that u >
1� � otherwise. Although linear calculations [1,4] of the
convective transition satisfy � ! 0, nonlinear fingering
experiments [3] do not generally satisfy either � ! 0 or
� ! 0. For the singular limit � ! 1, we show that u �
1� 3�=2 for � > 0 and that u � 1 for � < 0, indicating
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stretches the front significantly and endows it with a
midgap cusp. This unexpected behavior should be observ-
able in experiments and may be observable for other types
of propagating fronts, such as premixed flames.

The chemical reaction produces its own catalyst, whose
molecular diffusion into the unreacted fluid limits the
speed of propagation of the reaction front, which is typi-
cally [4,5] U0 � 0:03 mm=s for a flat advection-free front.
The catalyst concentration increases monotonically from
its value of zero far ahead of the propagating front to its
value C2 far behind, and increases steeply within a reaction
front of typical thickness L0 � DC=U0 � 0:07 mm. Here,
DC is the catalyst molecular diffusivity. In Eqs. (1) and (2),
lengths are scaled by the gap half-width a=2, velocities
are scaled by U0, concentrations are scaled by C2, and
� � a=2L0.

We seek soliton solutions of Eq. (1) propagating in the
p̂p � ẑz direction without change of shape at a constant
velocity u, for steady Poiseuille flow with � � const.
Such solutions satisfy
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where the concentration c�x; �� now depends on a conve-
nient comoving coordinate � � ��z� ut�, and satisfy the
boundary conditions c�x;�1� � 0, c�x;�1� � 1, and
@c��1; ��=@x � 0.

The limit � ! 0 of small-amplitude flows is accessible
to elementary perturbation theory. Inserting expansions
c � c0 � c1 � . . . and u � u0 � u1 � . . . in powers of �
into Eq. (3) gives u � 1� � and c�x; z; t� � f1�
e�z�ut�h�x��g�1 through first order [7]. Here, z � h�x� �
ut locates the surface of concentration c � 1=2 at the
center of the reaction front, whose shape is given by

h�x� �
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�1� x2�2: (4)
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and u � u�0� � u�2� � . . . . Through zeroth order, Eq. (3)
gives u � 1� �, as before, and c�z; t� � 1� e��z�ut���1.
Accordingly, for gap widths that are small compared with
the front width, molecular diffusion precludes any front
curvature and averages the fluid contributions to the front
velocity, yielding a front-velocity enhancement equal to
the average fluid velocity �.

In the wide-gap limit � ! 1, the shape h�x� of the
vanishingly thin front satisfies an ordinary differential
‘‘eikonal’’ equation
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which is derivable [8–10] from Eq. (1). Solving Eq. (5)
requires care because the coefficient of its second-order
curvature term vanishes as � ! 1. Ignoring this term
leaves a first-order equation
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which is valid except near singular regions where h00 is of
order �. Since h��x� � h�x�, we can confine our attention
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FIG. 1. Dimensionless reaction front velocity u vs the dimen-
sionless average velocity � of the Poiseuille flow between
parallel plates, for various ratios � of the gap half-width to the
front thickness. The front velocity increases monotonically with
increasing � at fixed �, and is bounded from below by the � ! 0
result u � 1� � (solid trace) and from above by the singular
� ! 1 results u � 1 for � < 0 and u � 1� 3�=2 for � > 0
(shortest dashes). Each trace for finite � has continuous slope,
and matches the value and slope of the � ! 0 result u � 1� �
near � � 0. Stationary fronts and reversed-direction fronts with
u � 0 and u < 0 are possible only for adverse flow satisfying
� � �1. Results for � ! 0, � ! 1, and � ! 0 were obtained
analytically, and all other results were obtained numerically.
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to the interval 0 � x � 1, with the boundary conditions
h0�0� � h0�1� � 0. Only one of these conditions can be
satisfied by choosing the eigenvalue u in Eq. (6), with
the sign of � determining which one. To satisfy the other
condition requires a singular boundary-layer solution [7]
whose value and slope match the solution given by Eq. (6)
at the edge of the boundary layer. This boundary layer is
ignored herein because its thickness vanishes as ��1, and
because u can be obtained without it. For � > 0, Eq. (6)
satisfies only h0�0� � 0 because jh0j increases with increas-
ing x, whence u � 1� 3�=2. For � < 0, Eq. (6) satisfies
only h0�1� � 0 because jh0j decreases with increasing x,
whence u � 1.

To explore the behavior for general � and �, we also
solve Eq. (1) numerically using finite differences [7], al-
lowing the transients to decay away sufficiently before
identifying the steady soliton solutions.

Figure 1 summarizes the front-velocity results, which
are confined to a double wedge centered on the velocity
u � 1 of a flat advection-free reaction front with � � 0.
Remarkably, the velocity u � 1 persists for arbitrary ad-
verse flow amplitudes � < 0 in the wide-gap limit � ! 1.
Accordingly, contrary to expectation, adverse Poiseuille
flow of any amplitude through wide gaps is incapable of
slowing the front or of reversing its direction of propaga-
tion. For gaps of finite width, adverse flow can indeed slow
or reverse the front; the intersections of the various traces
in Fig. 1 with the u � 0 line determine the paired values of
� and � which give stationary fronts. Such reversals occur
when significant lateral diffusion limits the front distortion.
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FIG. 2. Front distortion � vs �, for various values of �. Results
for � ! 1 (shortest dashes) are obtained by integrating Eq. (6).
Numerical results for finite � (longer dashes) evidently match
the analytical result � � ��=16 for small � and finite �, and for
small � and finite �.
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Supportive Poiseuille flow with � > 0 through wide gaps
increases the front velocity by an amount equal to the
midgap fluid velocity 3�=2. Thus, in contrast with large-
amplitude adverse flows through wide gaps, large-
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FIG. 3. Front and flow profiles for supportive Poiseuille flow
with � � 2, for which the flow is in the same direction as the
chemical reaction, with parallel plates located at x � �1.
For each value of � � 1, 4, 16, and 1, a pair of constant-
concentration traces with catalyst concentrations c � 2=5 (dot-
ted trace, reaction 40% completed) and c � 3=5 (solid trace,
reaction 60% completed) is shown. The separation between
these traces is comparable to the front thickness, which vanishes
for � ! 1. Arrows with solid heads represent the front veloci-
ties u � 3:04, 3.42, 3.85, and 4.00 for � � 1, 4, 16, and 1.
Arrows with hollow heads represent the quadratic Poiseuille
flow. The � ! 1 trace was obtained by integrating Eq. (6).
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amplitude supportive flows through wide gaps produce
large reaction front velocities.

To measure the distortion of the reaction front by the
flow, we define � � h�0� � h��1��=2 as the ratio of the
height of the c � 1=2 front profile to the gap width. The
result � � ��=16 obtained from Eq. (4) matches our
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FIG. 4. Front and flow profiles for adverse Poiseuille flow with
� � �2, similar to Fig. 3. The front velocities u � �0:98,
�0:49, 0.37, and 1.00 for � � 1, 4, 16, and 1 indicate that
the flow succeeds in reversing the direction of propagation of the
reaction front only for narrow gaps. In the wide-gap limit � !
1, the singularity of Eq. (5) demands a trailing midgap cusp in
the front, which propagates at its advection-free velocity u � 1.
The � ! 1 trace was obtained by integrating Eq. (6).
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numerical results for � vs � (Fig. 2) near � � 0, and for
small � and finite �. This latter result can be confirmed
analytically by carrying the small-� expansion to second
order [7], which reproduces the front shape given by
Eq. (4). Evidently, � and � always share the same sign,
indicating that the midgap region of the reaction front
bulges in the direction of the Poiseuille flow. Further-
more, j�j increases with both � and j�j.

Figures 3 and 4 show the front profiles for c � 2=5
(dotted traces) and c � 3=5 (solid traces), for � � 1, 4,
16, and 1. For each value of �, these profiles bracket the
steeply varying central region of the reaction front, of
thickness comparable to the front thickness L0 in conven-
tional units. The chemical reaction consumes unreacted
fluid ahead of the c � 2=5 profile to produce reacted fluid
behind the c � 3=5 profile. For � ! 1, these profiles
coincide because the front is thin compared with the gap.
In Fig. 3, the supportive Poiseuille flow is in the direction
of propagation of the chemical reaction front, whereas the
flow is adverse in Fig. 4, leading to significant differences
in the front profiles. Adverse flow stretches the front mark-
edly in the direction of the flow, and endows it with a
midgap cusp in the wide-gap limit � ! 1. This stretching
increases the surface area of the front, allowing it to con-
sume more fluid in order to avoid being slowed down by
the flow.

Replacing v by its gap average and ignoring the x
dependence of c in Eq. (1) are appropriate both for small
� and for small �; both give u � 1� �. These approxi-
mations should therefore be valid near the critical point for
the onset of buoyancy-driven convection [1,4], where the
convective amplitude � is small. However, u � 1� �
underestimates the front velocity for finite-amplitude flows
relevant to nonlinear fingering, and must be replaced by the
results u��; �� given in Fig. 1. For this purpose, we have
constructed an empirical formula for u��; �� (Ref. [7])
which matches the numerical data to within a few percent
over the entire computed range and which exactly repro-
duces the limiting values.

The unexpected refusal of reaction fronts to be slowed
by wide-gap adverse Poiseuille flow and the appearance of
the associated midgap cusp in the reaction front should be
easily observable in experiments on propagating autocata-
lytic reaction fronts. Since such behavior arises directly
from the insignificance of front curvature except very near
the cusp, this behavior might also be observable for pre-
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mixed flames and for other systems involving propagating
fronts, when the gap width is large compared with the front
thickness. Experiments would be especially straightfor-
ward for propagation through cylindrical capillary tubes,
for which calculations are underway. A wide parameter
range is accessible experimentally, by adjusting the dimen-
sionless flow rate � and gap width �. The 0.01% difference
[9] between the mass densities of the unreacted and reacted
fluids suggests that experiments be carried out with the
reaction proceeding downward, with the unreacted fluid
below the less dense reacted fluid, to avoid buoyancy
effects. Even under these conditions, distortion of the front
raises the overall gravitational potential energy above the
flat-front value and might lead to small buoyancy-driven
convection currents which would likely reduce the distor-
tion and velocity of the front. Whether such currents would
destabilize the cusp is an open question. Although it might
be difficult to observe such currents directly, they should be
accessible theoretically, using the Navier-Stokes equations
augmented to include small changes in the fluid density.
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