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Generic Sandpile Models Have Directed Percolation Exponents
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We study sandpile models with stochastic toppling rules and having sticky grains so that with a nonzero
probability no toppling occurs, even if the local height of pile exceeds the threshold value. Dissipation is
introduced by adding a small probability of particle loss at each toppling. Generically for the models with
a preferred direction, the avalanche exponents are those of critical directed percolation clusters. For
undirected models, avalanche exponents are those of directed percolation clusters in one higher

dimension.
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In recent years, there has been a great deal of interest in
the study of sandpile models as models of real granular
matter [1], and also as paradigms of self-organized critical
systems in general [2]. Following the well-known work of
Bak, Tang, and Wiesenfeld [3], many different types of
sandpile models with different toppling rules have been
studied [4]: deterministic and stochastic, with or without
preferred direction, different instability criteria [5], or
particle distribution rules [6], with fixed energy [7], etc..
However, a clear picture of the factors that determine
different universality classes of critical behavior is yet to
emerge [8].

A different paradigm for nonequilibrium critical phe-
nomena has been directed percolation (DP) which is be-
lieved to describe active to absorbing state transition in a
wide class of reaction-diffusion systems [9]. The activity of
avalanches in sandpile models can grow, diffuse, or die,
and any stable configuration is an absorbing state. Thus,
this should be in the universality class of DP with many
absorbing states [10]. Several models of self-organized
criticality which show critical exponents related to DP
were studied earlier [11]. However, these models do not
involve any conserved field. The critical exponents of
known models with conservation of sand are very different
from those of DP, and this is presumably due to the role of
the local conservation of sand in the model. In [6], a model
with conservation of particles showing DP exponents was
studied, but this study was mainly numerical.

In this Letter we study several sandpile models with
stochastic toppling rules, both directed and undirected.
The grains are “sticky” in our models in the sense that
there is a nonzero probability that any grains arriving at a
site during the avalanche process just get stuck there. We
find that the distribution function of avalanches in these
models has the same power law distribution as that of the
critical DP clusters. Our theoretical arguments, supported
by numerical simulations, show that generically these
models belong to the DP universality class. The previously
studied deterministic models [3,12] and the stochastic top-
pling model introduced by Manna [13] are unstable to
perturbations and flow to the DP fixed point.
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The relation of sandpile models to DP was attempted
earlier in [14] using sticky grains. However, in that paper,
no bulk dissipation was present, and sand was dissipated
only at the boundaries. The boundaries break the transla-
tional invariance of the steady state. The density becomes
space dependent, and the density profile affects the statis-
tics of avalanches. The critical exponents of avalanches are
not those of critical DP clusters, but expressible in terms of
DP exponents [15]. Introducing bulk dissipation in this
paper, we are able to get rid of these problems, and the
relationship between the sandpile and DP problems be-
comes more transparent.

For simplicity, we start by defining the directed model
on a (1 + 1)-dimensional square lattice. Various general-
izations to higher dimensions, undirected case, and other
toppling rules are straight forward and briefly discussed at
the end. The sites on an L X M torus are labeled by
Euclidean coordinates (i, j) with (i + j) even and j increas-
ing downwards. At each site (i, j), there is a non-negative
integer h; ; to be called the height of the pile at that site.
Initially, all h; ; are zero. The system is driven by choosing
a site at random and increasing the height at that site
by one. If one or more particles are added to a site at
time ¢ (from outside or from other sites), and its height
becomes greater than one, then it is said to become un-
stable at time .

Any site (i, j) made unstable at time f relaxes at time
(zr + 1) stochastically: With probability (1 — p), it be-
comes stable without losing any grains. We say that the
added particle(s) sticks to the existing grains. Otherwise
(with probability p), the relaxation occurs by toppling in
which the height at the site decreases by two, and the site
becomes stable. We introduce bulk dissipation by assum-
ing that in each toppling there is a small probability & that
both grains from the toppling are lost, otherwise (with
probability 1 — &), the two grains are transferred to the
two downwards neighbors (i £ 1, j + 1).

Note that there is a nonzero probability that a stable site
can have arbitrarily large heights. We relax all the unstable
sites by parallel dynamics. A site made unstable at time ¢ is
relaxed in one step at time ¢ + 1, independent of whether it
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received one or more grains at the previous time step. Once
a site has relaxed, it remains stable until perturbed again by
new grains coming to the site. This relaxation process is
repeated until all sites become stable, and then a new grain
is added.

The model is specified by two parameters p and §. The
case p = 1,6 = 0 is exactly soluble, and its critical ex-
ponents are known in all dimensions [12]. In this case, one
has to introduce open boundary conditions to ensure the
existence of a steady state. In two dimensions, the proba-
bility that adding a particle will cause an avalanche of s
topplings varies as s~7 for large s with 7, = 4/3. The
probability that the duration of avalanche equals T varies
as T~ ™ with 7, = 3/2. The case § = 0, p arbitrary was
studied earlier in [14] discussed in the introduction.

The probability distribution of different configurations
in the steady state for general values of p and & have an
interesting structure. Define a variable g; ; = h; ;(mod 2).
We group together different stable configurations {#; ;}
corresponding to the same values of {g; ;}. There are ZL{V’
such equivalence classes. On addition of a particle to a site,
the g variable at that site flips. A toppling leads to flipping
of g’s at the two downward sites. From detailed balance, it
follows that, in the steady state, each of the 24 equivalent
classes occurs with equal probability [16].

If p = 1, with J arbitrary, the only allowed height values
are 0 and 1. In this case, we get a full characterization of the
steady state. The n-point correlation functions satisfy lin-
ear equations, and exact solution of [12] can be generalized
to arbitrary 6. We omit the details here. The distribution of
avalanche sizes has an exponential decay for nonzero 8.

As p is decreased below 1, heights greater than 1 appear
with nonzero probability in the steady state. The mean
height (h; ;) increases as p is decreased, and there exists
a critical value p*(8) such that, for p = p*(§), the height
of the pile increases without bound, and there is no steady
state (Fig. 1).
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FIG. 1. The line p = p*(5) separating the steady state and no-

steady-state regions in the p-& plane. The inset shows a plot of
[p. — p*(8)] versus 8. The straight line shows the theoretical

slope 1/7.
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The absence of a steady state is obvious along the the
line p = 0, with 6 arbitrary, as in this case, different sites
cannot influence each other, and each added particle just
sticks to the existing pile. A similar decoupling occurs
along the line 6§ = 1, with p arbitrary. In this case, the
average particle loss per added grain is 2(1 — ¢,)p, where
co is the density of sites with height 0. In the steady state
this must equal 1. As ¢y = 0, a steady state can exist only
for p > 1/2. Thus p*(6§ = 1) = 1/2.

We now derive the equation for the boundary line p =
p*(8). At the phase boundary, clearly ¢, = 0. In the growth
of an avalanche in the steady state of the system, any site
which receives at least one grain from its upward neighbors
sends grains to downward neighbors with a probabilty
p(1 — ). Thus the probability Prob(s) that an added grain
will cause an avalanche in which at least s sites transfer
particles to downward neighbors is the same as the proba-
bility Probpp(s|p) of a cluster of at least s sites in a directed

site-percolation ~ process ~ with  concentration  of
active sites = p.
Prob(s) = Probpp(s|p = p(1 — §)). €))

Note that Eq. (1) also holds in the entire “no steady state”
phase, where mean height continues to increase, but
Prob(s) tends to a limiting distribution for large times.

By particle conservation, in the steady state, the average
number of topplings in an avalanche must be equal to
1/(26). Let npp(p) be the sum of the average number of
occupied and perimeter sites in the cluster corresponding
to a randomly picked site in the DP problem. Now, the
equation for the phase boundary can be expressed in terms
of the function npp(p) as

npp((1 = 8)p*(8)) = 1/(29). 2

For small &, the average size of clusters is large, and p is
near the critical probability p,. for the directed site perco-
lation on this lattice, the function npp is known to vary as
(p. — p)~7. Substituting this in Eq. (2) we get

p*(8) = p. — A8Y/Y + terms of higher order in 8, (3)

where A is some constant and 7y is the susceptibility
exponent of the DP problem. In particular, we have p*(§ =
0) = p.. The inset of Fig. 1 shows a log-log plot of
the numerically determined values of p, — p*(8) plot-
ted versus 6. We get good agreement with Eq. (3) using
the existing estimates p.= 0.70548515 and vy =
2.277730 [17].

Since the average number of topplings in an avalanche in
the steady state is 1/(28), we will see self-organized
criticality with long-ranged correlations only in the limit
86— 0%, and p. = p =1 (marked with a heavy line in
Fig. 1). For § = 0" and 1 = p > p,, in the steady state
co > 0. Each site is characterized by two probabilities,
p1 and p,, which correspond to the probability that a
site topples when one or two particles are added to it,
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respectively. Clearly, p; = (1 — ¢o)p and p, = p. The
correlations between heights at different sites are small,
and if we ignore them [18] the evolution of avalanches
(Fig. 2) in the steady state is as in the Domany-Kinzel
model of DP with parameters (p,, p,) [19].

Even if some short-range correlations are present, they
should not modify critical behavior, which is expected to
be the same as in DP. In Fig. 3, we have compared the
probability distribution of avalanches with that of DP
clusters. For s >> 1, the latter is expected to satisfy the
scaling for

Prob(s) = %f[s/s*], “4)

where A is some amplitudes, 7 is a critical exponent for
cluster size distribution in DP, and the function f(x) tends
to a finite constant as x tends to zero, and decreases
exponentially with x for large x. We assume that s* varies
as 6~ ?. Using the constraint (s) ~ 8!, we get ¢ =
1/(2 — 7). Using the known numerical estimate 7 =
1.108 in d =1+ 1 [17], we find a very good collapse
when 57! Prob(s) is plotted versus s8¢ for two different
values p = p.and p = 0.873, and two values of § = 1073
and 8§ = 107%. In the inset, the scaling function f is
compared with that for DP clusters. We get an excellent
collapse, a strong evidence that the two functions are the
same, and the correlations in heights in the steady state are
irrelevant.

It is straightforward to extend the previous discussion to
higher dimensions. Thus the avalanche exponents in the
(d + 1)-dimensional model are the same as the exponents
of cluster size distribution in the (d + 1)-dimensional DP
at critical point. The upper critical dimension is d = 4.

Consider now the undirected version of the problem on a
d-dimensional hypercubical lattice. The rules are the same
as before, except that, on toppling, a particle is transferred
to each of the 2d neighbors of the toppling site. Clearly, in

t

FIG. 2. Picture of a typical avalanche for the 2D directed
model (A) and the time evolution of the 1D undirected model
(B) for p = 0.873 > p. and 6 = 0.0001 are compared with the
clusters at the critical line of the Domany-Kinzel model of DP
with p, = p.
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this case also, there is no steady state for small p. For p =
p*(6), the mean height per site diverges. Then, any
site which has one or more particles added to it sends
particles to its neighbors with probability p(1 — &). If we
look at the space-time history of the evolution of the
avalanche, we get a directed site-percolation cluster on a
(d + 1)-dimensional body centered hypercubical (bch)
lattice. The phase boundary in this undirected model is
also the same as that of the directed model on the
(d + 1)-dimensional bch lattice.

For p > p*(8), the undirected model differs from the
directed model in that the height of the pile at a site does
not change between two topplings. This may give rise to
possible long-term memory effects. However, in our model
this effect is rather small, as the probability of toppling
depends on height only if the height is zero. Along the line
p = p*(5), the memory affect is strictly absent, as the
density of sites with zero height goes to zero. We find
that even for p as large as 0.873, the avalanches are
qualitatively similar to DP (Fig. 2), and the distribution
function is also indistinguishable from that of near-critical
DP clusters (see inset of Fig. 3). There is a crossover from
deterministic limit (p = 1, § = 0) [3] to DP for p # 1.

Why does the conservation of particles not change the
critical behavior away from DP in our problem? Consider a
simple DP process of particles of type X, on a lattice with
ny(7) particles of X at site 7. We now attach a register ny(7)
at each site 7, which decreases (increases) by one each time
a particle X is created ( destroyed) at 7. Then, clearly, we
have a local conservation of ny + ny. Clearly, if the dy-
namics of the X particle is not affected by the bookkeeping,
the process still belongs to the DP universality class. In our
model, ny is the height of the pile. It fluctuates about its
mean value, but there is an influence of ny on the dynamics
of X particles as birth of X particles is not allowed if ny is
Zero.
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FIG. 3. Scaling collapse of s7~! Prob(s) versus s6¢ for four

different combinations of parameters p, §. The inset compares
the scaling function for the directed and undirected models with
(p, 8) = (0.873, 10~*) with that for DP at p = 0.7.
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FIG. 4 (color online). A schematic flow diagram of renormal-

ization group flows between different fixed points of sandpile
models.

"stickiness''

The phenomenological evolutions for the coarse-grained
density fields ny(7) and ny(7) in the conservative limit § =
0% may be written as [20]

any = Vny + any — bni + cnyg(ny) + n(7, 1), ()

d,(nx + ny) = V?ny, (6)

where 7(7, t) is a noise term, and a, b, and ¢ are phenom-
enological constants. The crucial term here is the coupling
term cnyg(ny). Vespignani et al. [20] chose g(ny) propor-
tional to ny. In our case, ny has a threshold, and the effect
on ny saturates to a finite value even as ny increases to
infinity. The simplest choice of g(ny) to model this is to
choose g(ny) = 6(ny — h.), where 6 is the step function
and £, is the threshold value. In naive power counting, this
term has the same scaling as the linear term in ny. We are
not able to treat this analytically. But the results of our
simulations strongly indicate that this perturbation does not
change the critical exponents [21].

The DP fixed point is expected to be rather robust
against perturbations. We have tested several variations
of toppling rules in simulations. One can make the particle
transfer process stochastic with each transferred particle
going to a randomly chosen downward neighbor or one can
allow multiple topplings at a site with each site toppling
twice, thrice, etc., with decreasing probability, so long as
the height is > 1. With both multiple topplings and sto-
chasticity in particle transfer, in the limit of no stickiness
this becomes Manna model [13]. For sticky grains, in all
these models, we get the DP behavior. The schematic
renormalization group flows are shown in Fig. 4

In summary, we have studied several sandpile models
which show DP-like behavior. A feature, which is common
in all these models is “stickiness,” i.e., with a nonzero
probability a site can remain stable even with a height
greater than the threshold. This behavior seems to be robust
against perturbations, and is the generic behavior of sand-
pile models, both directed and undirected.

We thank M. Barma, R. Dickman, and A. Vespignani for
their comments on the manuscript.
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