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Two- and Three-Dimensional Oscillons in Nonlinear Faraday Resonance
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We study 2D and 3D localized oscillating patterns in a simple model system exhibiting nonlinear
Faraday resonance. The corresponding amplitude equation is shown to have exact soliton solutions which
are found to be always unstable in 3D. On the contrary, the 2D solitons are shown to be stable in a certain
parameter range; hence the damping and parametric driving are capable of suppressing the nonlinear
blowup and dispersive decay of solitons in two dimensions. The negative feedback loop occurs via the
enslaving of the soliton’s phase, coupled to the driver, to its amplitude and width.
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O�" �, where t � " �=2, xk � �"= ��k, and the slowly
varying amplitude satisfies

We now examine the stability of the two solitons.
Linearizing Eq. (2) in the small perturbation
Oscillons are localized two-dimensional oscillating
structures which have recently been detected in experi-
ments on vertically vibrated layers of granular materials
[1], Newtonian fluids, and suspensions [2,3]. Numer-
ical simulations established the existence of stable oscil-
lons in a variety of pattern-forming systems, including
the Swift-Hohenberg and Ginsburg-Landau equations,
period-doubling maps with continuous spatial coupling,
semicontinuum theories, and hydrodynamic models [3,4].
Although these simulations provided a great deal of insight
into the phenomenology of the oscillons (in particular,
demarcated their existence area on the corresponding
phase diagrams), little is known about the mechanism by
which they acquire or loose their stability.

In this Letter, we consider a generic model of nonlinear
parametric resonance in a distributed system—which has
exact oscillon solutions and allows an accurate character-
ization of their existence and stability domains. The main
purpose of this work is to understand how the oscillons
manage to resist the nonlinear blowup and dispersive decay
which are characteristic for localized excitations in 2D
media. Our model admits a straightforward generalization
to three dimensions, and we use this opportunity to explore
the existence of stable oscillons in 3D as well.

The model consists of a D-dimensional lattice of para-
metrically driven nonlinear oscillators (e.g., pendula) [5]
with the nearest-neighbor coupling:
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d�2
�k � �

d
d�
�k � 2�D�k � �

X
jm�kj�1

�m

� �1� � cos2!�� sin�k � 0; (1)

where k � �k1; . . . ; kD�. Assuming that the coupling is
strong, �� 1; that the damping and driving are weak,� �
�"2, � � 2h"2, where "� 1; and that the driving half-
frequency is just below the edge of the linear spectrum gap,
!2 � 1� "2, the oscillators execute small-amplitude li-
brations of the form �k � 2" �t;xk�e�i!� � c:c:�
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i t �r2 � 2j j2 �  � h � � i� ; (2)

the parametrically driven damped nonlinear Schrödinger
(NLS) equation. Although our lattice model is not aimed at
the accurate description of any particular experimental
situation, we note that Eq. (2) does have specific applica-
tions, e.g., describes an optical resonator with different
losses for the two polarization components of the field
[6]. It was also used as a phenomenological model of
nonlinear Faraday resonance in water [3].

In the absence of the damping and driving, all localized
initial conditions in the 2D and 3D NLS equations are
known either to disperse or blow up in finite time [7–9].
Surprisingly, numerical simulations of Eq. (2) with suffi-
ciently large h and � revealed the occurrence of stable (or
possibly long-lived) stationary localized excitations [3].
No analytic solutions were found, however, and a possible
stabilization mechanism remained unclear [10].

In fact, there are two exact (though not explicit) sta-
tionary radially symmetric solutions given by

 � � A�e�i�� R0�A�r�; (3)

where A2
� � 1�

�����������������
h2 � �2

p
, �� � 1

2 arcsin��=h�, �� �
�
2 � ��, and R0�r� is the bell-shaped nodeless solution of

r2
rR�R� 2R3 � 0; Rr�0� � R�1� � 0; (4)

with r2
r � @2r �

D�1
r @r. (Below we simply write R for

R0.) Solutions of Eq. (4) in D � 2 and 3 are well docu-
mented in literature [7]. One advantage of having an
explicit dependence on h and � is that the existence
domain is characterized by an explicit formula. The soliton
 � exists for all h > � and the  � for � < h <

���������������
1� �2

p
.

It is pertinent to add here that for h < �, all initial con-
ditions decay to zero. This follows from the rate equation

@tj j
2 � 2r�j j2r�� � 2j j2�h sin2�� ��; (5)

where  � j je�i�. Defining N �
R
j j2dx, Eq. (5) im-

plies Nt � 2�h� ��N whence N�t� ! 0 as t! 1.
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� �x; t� � e�����~tt�i���u�~xx� � iv�~xx��; (6)

where ~xx � A�x, ~tt � A2
�t, we get an eigenproblem

L1u � ���� ��v; �L0 � !�v � ��� ��u; (7)

where � � �=A2
� and the operators

L0 � �~rr2 � 1� 2R2�~rr�; L1 � L0 � 4R2�~rr�; (8)

with ~rr2 �
PD
i�1 @

2=@~xx2i . (We are dropping the tildas be-
low.) The quantity !, ! � �2

�����������������
h2 � �2

p
=A2

�, is positive
for the  � soliton and negative for  �. Each ! defines a
‘‘parabola’’ on the �h; �� plane:

h �

������������������������������������
!2=�2� !�2 � �2

q
: (9)

Introducing $2 � �2 � �2 and changing v�x� !
��� ��$�1v�x� [11], Eq. (7) is reduced to a one-parame-
ter eigenvalue problem:

�L0 � !�v � $u; L1u � �$v: (10)

Since R0�r� is nodeless in 0 � r <1, and L0R0 � 0,
the operator L0 � ! is positive definite for ! < 0. In this
case the eigenvalue can be found as a minimum of the
Rayleigh quotient:

� $2 � min
w

hwjL1jwi

hwj�L0 � !��1jwi
: (11)

The operator L1 hasD zero eigenvalues associated with the
translation eigenfunctions @iR�r�, i � 1; 2; . . . ; D; hence
it also has a negative eigenvalue with a radial-symmetric
eigenfunction w0�r�. Substituting w0 into the quotient in
(11), we get �$2 < 0 whence � > �. Thus the soliton  �

is unstable (against a nonoscillatory mode) for allD, h, and
� and may be safely disregarded.

Before proceeding to the stability of  � (for which we
have ! > 0), we make a remark on the undamped, undriven
case (! � 0). In three dimensions, the eigenvalue problem
(10) has a zero eigenvalue associated with the phase in-
variance of the unperturbed NLS equation (2) and another
one, associated with the scaling symmetry:�

L0 0
0 L1

��
R

� 1
2 �rR�r

�
�

�
0
R

�
: (12)

Both the eigenvector �R; 0�T and the rank-2 generalized
eigenvector �0;� 1

2 �rR�r�
T are radially symmetric. In 2D

the number of repeated zero eigenvalues associated with
radially symmetric invariances is four; in addition to those
in (12) we have a two-parameter group of the lens trans-
formations [7,8] giving rise to�

L0 0
0 L1

��
1
8 r

2R
g

�
�

�
� 1

2 �rR�r
1
8 r

2R

�
; (13)

with some g�r�. When h2 � �2 (or, equivalently, !) devi-
ates from zero, all the above invariances break down and
the two (respectively, four) eigenvalues move away from
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the origin on the plane of complex $. The directions of
their motion are crucial for the stability properties.

We can calculate $�!� perturbatively, assuming

$ � $1!1=4 � $2!2=4 � $3!3=4 � . . . ;

u � u1!
1=4 � u2!

2=4 � . . . ;

v � R� v1!
1=4 � v2!

2=4 � . . . ;

(14)

where vi � vi�r�, ui � ui�r�. Substituting into (10), the
order !1=4 gives u1 � �$1L�1

1 R. Using (12), u1 is found
explicitly: u1 � �$1=2��rR�r. At the order !2=4 we get
u2 � �$2L�1

1 R and equation L0v2 � $1u1. Since L0

has a null eigenvector, R�r�, it is solvable only if

$1

Z
R�r�u1�r�dx � �$2

1

D� 2

4

Z
R2�r�dx � 0: (15)

In the two-dimensional case the condition (15) is satisfied
for any $1, whereas in D � 3 we have to set $1 � 0. Next,
at the orders !3=4 and !4=4 we obtain, respectively,

L0v3 � $2u1 � $1u2 � $1$2�rR�r; (16)

L0v4 � R� $1u3 � $2u2 � $3u1: (17)

Equation (16) is solvable both in 2D and 3D. The solv-
ability condition for (17) reduces to

$4
1 � �

hRjRi

hRjL�1
1 L�1

0 L�1
1 jRi

� �16

R
R2dxR
R2r2dx

; (18)

$22 �
hRjRi

hRjL�1
1 jRi

� 4; (19)

in two and three dimensions, respectively.
Thus we arrive at two different bifurcation scenarios. In

3D, where $1 � 0 and $2 is real, two imaginary eigenval-
ues �j$2j!1=2 converge at the origin as !! 0 from the left.
(This does not mean that the  � soliton is stable as there
still is a pair of finite real eigenvalues for ! < 0.) As !
grows to positive values, the imaginary pair �j$2j!1=2

moves onto the real axis. A numerical study [12] of the
eigenvalue problem (10) shows that when ! is further
increased, the four real eigenvalues collide, pairwise, and
acquire imaginary parts. Importantly, for all 0< !< 1 the
imaginary parts remain smaller in magnitude than the real
parts. This means that Re� remains greater than � all the
time, implying that the three-dimensional  � soliton is
unstable for all h and �.

The bifurcation occurring in 2D is more unusual. As !
approaches zero from the left, four eigenvalues converge at
the origin, two along the real and two along the imaginary
axis: $ � �j$1j��!�

1=4;�ij$1j��!�
1=4. As ! moves to

positive, the four eigenvalues start diverging at 45� to the
real and imaginary axes. Hence to the leading order,
Im$ � Re$, and in order to make a conclusion about the
stability, we need to calculate the higher-order corrections.
The order !5=4 produces a solvability condition
104101-2



1 2 3 4 5
0

0.5

1

h − γ

γ

h =    1 +      
γ

2   

√ 
 In this region all localized 

solutions are unstable to
continuous spectrum waves

FIG. 1. Stability diagram for two-dimensional solitons. The
(�; h� �) plane is used for visual clarity. No localized or
periodic attractors exist for h < � (below the horizontal axis).
The region of stability of the soliton  � lies to the right of
the solid curve. The dotted curve gives the variational approxi-
mation to the stability boundary of the  � soliton: h � �1�
�4�1=2, � �

���
2

p
.
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$3
1$2hRjL�1

1 L�1
0 L�1

1 jRi �
$3
1$2
16

Z
R2r2dx � 0;

yielding $2 � 0. [Here we made use of (13).] Finally, the
order !6=4 defines $3 [where g�r� is as in (13)]:

$3 �
1

$1
�
$31
2

R
g�r�R�r�r2dxR
R2�r�r2dx

: (20)

Taking $1 in the first quadrant, $1 � ei�=4j$1j, and
doing the integrals in (18) and (20) numerically, we con-
clude that $3 is in the second quadrant, $3 � e3i�=4j$3j,
which implies that jIm$j > jRe$j. In terms of $, the
stability criterion Re� � � is written as � � �c, where

�c�!� �
2

2� !
Re$�!� Im$�!������������������������������������
�Im$�2 � �Re$�2

p : (21)

The smallest � for which the soliton can be stable equals

lim
!!0

�c�!� �
1

2
���
2

p j$1j3=2j$3j
�1=2: (22)

Substituting for $1, $3 their numerical values, (22) gives
�c�0� � 1:006 47. For ! � 0 we obtained $�!� by solving
the eigenvalue problem (10) directly [12]. Here we have
restricted ourselves to radially symmetric u�r� and v�r�.
Expressing ! via �c from (21) and feeding into (9), we get
the stability boundary on the �h; �� plane (Fig. 1).

Asymmetric perturbations do not lead to any instabilities
in 2D. To show this, we factorize, in (10), u�x� � ~uu�r�eim’

and v�x� � ~vv�r�eim’, where tan’ � y=x and m is an in-
teger. The eigenproblem (10) remains the same, with only
the operators L0 and L1 being replaced by

L�m�
0 � L0 �m2=r2; L�m�

1 � L1 �m2=r2: (23)

The number of the discrete eigenvalues of L�m�
0 is limited

by the Bargmann bound [13]: n�m� � 1
m

R
R2rdr.

Numerically,
R
R2rdr � 0:93; hence the spectrum of

L�m�
0 is purely continuous (and extends from 1 to 1).

Therefore the operator L�m�
0 � ! with ! < 1 is positive

definite, and the eigenvalues of the problem (10) can
be found from the variational principle (11). The operator
L�1�
1 has a zero eigenvalue with the eigenfunction

w�1��r� � Rr�r� which has no nodes for 0< r<1; hence
all its other eigenvalues (if any exist) are positive. This also
implies that operators L�m�

1 with m2 > 1 are positive defi-
nite, as L�m�

1 � L�1�
1 > 0. Thus the minimum of the quotient

(11) is zero for m2 � 1 and positive for m2 > 1, and so all
$2 are � 0.

Besides the nodeless solution R0�r�, the ‘‘master’’
equation (4) has solutions Rn�r� with n nodes, n � 1.
These give rise to a sequence of nodal solutions of the
damped-driven NLS (2), defined by Eq. (3) with R0 !
Rn. It is easy to realize that the solutions  �

n are unstable
against radially symmetric nonoscillatory modes for
all h, �, n, and D. (The proof is a simple generalization
104101-3
of the one for  �
0 .) To examine the stability of the  �

n , we
solved the eigenvalue problem (10) numerically, with op-
erators L�m�

0;1 as in (23). In 3D, positive real eigenvalues
(with radially symmetric eigenfunctions) are present in the
spectrum for all !; thus the three-dimensional nodal sol-
utions are always prone to a symmetric collapse or dis-
persive spreading. In 2D, the  �

n solutions are stable
against radially symmetric perturbations for sufficiently
large � but turn out to be always unstable against azimuthal
perturbations. In particular, the  �

1 solution has instabil-
ities associated with 1 � m � 5, and the m � 4 mode has
the largest growth rate for all !. The corresponding eigen-
value $ is real and the eigenfunctions u�r� and v�r� have a
single maximum near the position of the lateral minimum
of the function R1�r�. Following Ref. [14] where a similar
scenario was described for nodal optical waveguides, the
above observation suggests that the  �

1 solution will break
into a symmetric pattern of five solitons  �

0 : one at the
origin and four others around it, standing still or drifting
away with exponentially small velocities. Next, the  �

2
solution has azimuthal instabilities with 1 � m � 10.
The analysis of the corresponding eigenfunctions suggests
that, depending on h and �, the breakup products will
comprise a necklace of 11 to 13  �

0 solitons: one at the
origin, three or four around it, and seven or eight forming
an outer ring. We verified these predictions via direct
numerical simulations of the time-dependent array (1);
the simulations corroborated the above scenario. Thus the
nodal solutions can be interpreted as degenerate, unstable
coaxial complexes of the nodeless solitons.

Last, we need to understand the stabilization mechanism
in qualitative terms. Equation (2) is derivable from the
stationary action principle with the Lagrangian
104101-3
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L � e2�tRe
Z
�i t 

� � jr j2 � j j2 � j j4 � h 2�dx:

Choosing the ansatz  �
����
A

p
e�i���B�i0�r2 [15,16] with

A;B; �; 0 functions of t, this reduces, in 2D, to

L � e2�t
A
B



_�� � 1�

_00
2B

�
2B

cos2�
�
A
2

� h cos��� 2�� cos�
�
; (24)

where tan� � 0=B. The four-dimensional dynamical sys-
tem defined by (24) has two stationary points representing
the  � solitons. In agreement with the stability properties
of the solitons in the full PDE, the  � stationary point is
unstable for small � but stabilizes for larger dampings
(Fig. 1). When � is large we can expand A � A0 �

1
� A1 �

:::, B � B0 �
1
� B1 � :::, � � �

4 �
1
� �1 � :::, 0 �

1
�01 � :::. Letting h � �� c

2� , where 0 � c � 1, defining
T � t

� , and matching coefficients of like powers of 1
� yields

a two-dimensional system
dA0=dT � A0�c� 801 � 4�21 � 2�01=B0�

2�; (25)

dB0=dT � 801B0 � 401�1 � 4�02
1=B0�; (26)

�1 �
1

2
� 2B0 �

3

4
A0; 01 �

1

2
A0B0 � 2B2

0: (27)

Like their parent system (24), Eqs. (25)–(27) have two
fixed points, the saddle at B�

0 � 1
2 �

���
c

p
, A�

0 � 4B�
0 and

a stable focus at B�
0 � 1

2 �
���
c

p
, A�

0 � 4B�
0 .

According to (5), the soliton’s phase � � �� 0r2 con-
trols the creation and annihilation of the soliton’s elemen-
tary constituents (whose density is j j2). [If Eq. (2) is used
to model Faraday resonance in fluids [3],

R
j j2dx has the

meaning of the mass of the fluid captured in the oscillon.]
Since the creation and annihilation occurs mainly in the
core of the soliton [see (5)], the variable phase component
0r2 plays a marginal role in this process. Instead, the
significance of the quantity 0 is in that it controls
the flux of the constituents between the core and the
periphery of the soliton—see the �r term on the right-
hand side of (5).

If we perturb the stationary point  � in the four-dimen-
sional phase space of (24), the variables � and 0 will zap,
within a very short time �t� 1

� , onto the two-dimensional
subspace defined by the constraints (27). After this short
transient the evolution of � and 0 will be immediately
following that of the soliton’s amplitude

����
A

p
and width

1=
����
B

p
. In the case of the  � soliton, this provides negative

feedback: perturbations in A and B produce only such
changes in the phase and flux that the new values of �
and 0 stimulate the recovery of the stationary values of A
and B. (The phase � works to restore the number of
constituents while 0 rearranges them within the soliton.)
In the case of  � the feedback is positive: the perturbation-
induced phase and flux (27) strive to amplify the perturba-
tion of the soliton’s amplitude and width still further.
Finally, for small � the coupling of � and 0 to A0 and B0
104101-4
is via differential rather than algebraic equations. In this
case the dynamics of the phase and flux is inertial and their
changes may not catch up with those of the amplitude and
width. The feedback loop is destroyed and the soliton
destabilizes.
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