
VOLUME 89, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 2 SEPTEMBER 2002
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Relativistic coupled-cluster and second-order many-body perturbation theories were used to construct
two- and three-body potentials for the interaction between mercury atoms. A subsequent combined
simulated-annealing downhill simplex and conjugate gradient-optimization procedure gave global minima
for mercury clusters with up to 30 atoms. The calculations reveal magic cluster numbers of 6, 13, 19, 23,
26, and 29 atoms. At these cluster sizes, the static dipole polarizability obtained from density-functional
theory has a minimum. The calculations also reveal a fast convergence of the polarizability towards the
bulk limit in contrast to the singlet-triplet gap or the ionization potential.
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B3LYP a � b � 6:26 A, c � 12:24 A, Ecoh � 0:018 eV.
This is certainly not a very satisfying situation.

comparison with the pseudopotential results of Flad
et al. [22].
The simulation of mercury clusters or the bulk is a
notoriously difficult problem in computational physics.
First, the Hg-Hg interaction is relatively weak (370–
400 cm�1) [1] and in the range of typical van der Waals
interactions such as Ar2 (85 cm�1), Kr2 (127 cm�1), or
Xe2 (186 cm�1) [2]. While two-body potentials for the
Group 18 atoms give lattice constants, bulk moduli, and
cohesive energies close to the experimental values, a re-
cently derived relativistic coupled-cluster two-body poten-
tial for mercury [1] leads to lattice constants a �
b � 3:47�3:46� �A, c � 8:49�6:66� �A, and a cohesive en-
ergy of Ecoh � 0:42�0:79� eV for the rhombohedral lattice
(experimental values are given in parentheses). For mer-
cury, this implies a rather slow convergence of the n-body
expansion of the interaction potential,

V �
X

i<j

V�2��rij� �
X

i<j<k

V�3��rij; rik; rjk� � . . . ; (1)

where rij is the distance between two mercury atoms.
Second, there are currently no quantum theoretical

methods available to accurately treat medium to large
mercury clusters. Density-functional methods are not ac-
curate enough to treat the dispersive type of interactions
[3–5], and coupled-cluster or higher order many-body
perturbation theory is too demanding in computer resour-
ces. As a further complication, relativistic effects have to
be included as well [6]. Even so, solid state calculations for
mercury have been performed in the past using density-
functional theory (DFT) [6,7], most of them applied ex-
perimental lattice parameters and only studied properties
of the electronic band structure [8–10]. Using a number of
different DFT methods ranging from the local density
approximation (LDA) to more sophisticated gradient cor-
rected forms, we obtain lattice parameters and cohesive
energies [11] which differ by one order of magnitude; e.g.,
LDA a � b � 3:55 �A, c � 7:96 �A, Ecoh � 0:67 eV, PBE
[12] a � b � 3:71 �A, c � 9:26 �A, Ecoh � 0:12 eV, and

� �
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The cluster size at which the nonmetal (van der Waals)
to metal transition in mercury occurs, that is the band gap
�E becomes smaller than kT, is still a much debated and
controversial issue [13,14]. This transition is estimated to
appear at a cluster size of n � 70 according to Rademann
[15], n � 80 according to Singh [7], n � 135 according to
Pastor et al. [16], or even at larger n values [14]. In a recent
photoelectron study on negatively charged mercury clus-
ters, the s-p gap was estimated to close at a cluster size of
400� 30 [17]. In fluid mercury, the single particle gap
between the 6s and the 6p bands opens at a density of � �
8:8 g cm�3 [18] (compare to 13:59 g cm�3 for fluid mer-
cury under standard conditions). It is therefore important to
study the band gap in mercury clusters with increasing
cluster size.

In order to obtain electronic properties of small to
medium-sized mercury clusters, we adopted the following
strategy. First, we developed an accurate two-body poten-
tial V�2� corrected by basis set superposition errors using
relativistic coupled-cluster techniques plus spin-orbit cou-
pling together with correlation consistent basis sets. The
computational details are given in Ref. [1]. We then calcu-
lated approximately 300 points for the Hg3 hypersurface at
the relativistic second-order many-body perturbation
theory level (MBPT2) and adjusted these to a permutation
invariant three-body potential V�3� similar to Parish and
Dykstra [19]. Coupled cluster calculations at the CCSD(T)
level of a few points on the D3h path of the hypersurface
ensured that the MBPT2 treatment is sufficiently accurate.
Moreover, basis set superposition errors obtained for the
three-body part of the potential [20,21] are extremely
small and can be neglected; that is, most of the error is
contained in the two-body part of the potential which
has been removed [1]. We also produced a radially depend-
ent four-body potential along the Td path of the six-
dimensional hypersurface of Hg4. The results for geome-
try optimizations up to Hg5 are shown in Table I in
 2002 The American Physical Society 103401-1



TABLE I. Bond distance r (in �A), atomization energy De (in eV, not corrected for zero-point
vibrational energy, ZPVE), and ZPVE (in cm�1) for small mercury clusters dependent on the
interaction potential. The symmetries of the global minimum structures are D3h for Hg3 and Hg5,
and Td for Hg4. min/max indicates the smallest and largest Hg-Hg distance in the Hg5 cluster.

2 2� 3 2� 3� 4 2� 3n Flad et al. [22]

r�Hg-Hg�
Hg2 3.690 	 	 	 	 	 	 	 	 	 3.75
Hg3 3.690 3.526 	 	 	 3.612 3.75
Hg4 3.690 3.328 3.355 3.398 3.35
Hg5 min 3.673 3.287 	 	 	 3.361 3.25

max 5.974 5.424 	 	 	 5.530 5.77
De

Hg2 0.045 	 	 	 	 	 	 	 	 	

Hg3 0.136 0.161 	 	 	 0.173 0.183
Hg4 0.180 0.409 0.406 0.403 0.472
Hg5 0.413 0.690 	 	 	 0.628 0.695

ZPVE
Hg2 9.8 	 	 	 	 	 	 	 	 	 9.6
Hg3 29.2 34.8 	 	 	 37.1 47.1
Hg4 57.5 84.5 	 	 	 85.5 105.0
Hg5 87.1 145.0 	 	 	 131.3 154.5
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FIG. 1. Ionization potentials IP (in eV) dependent on the
cluster size n of Hgn. Experimental data from Cabaud
et al. [27] and Rademann et al. [28].
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The Hg-Hg distances decrease substantially from Hg2 to
Hg5, and a comparison between the different n-body ex-
pansions clearly shows that a two-body potential is not
sufficient. By definition, such a potential leads to equal
bond distances for the dimer, trimer (equilateral triangle),
and the tetramer (tetrahedron). On the other hand, adding
the three-body potential leads soon to overbinding for all
Hgn clusters, and we obtain for n > 7 bond distances
below the solid state value of 2:99 �A. This indicates that
higher order body potentials cannot be neglected.
Nevertheless, the two- and �2� 3�-body potentials lead
to identical shapes and symmetries for all global minima
of Hgn clusters up to n � 30 as our simulating annealing
study shows. We therefore adopted a particle dependent
three-body potential to account for higher order effects,

V�3��n; rij; rik; rjk� � �nV�3��rij; rik; rjk�; (2)

where �n is a particle dependent scaling factor such that
�1 yields results for the solid state [23] in reasonable
agreement with experiment. Test calculations of smaller
clusters showed that a linear scaling with inverse cluster
size (�n � a� bn�1) is sufficient. We note that shifting
the particle dependency from the two- into the three-body
part should improve the accuracy. The technical details
will be published elsewhere.

Global and close-by local minima for mercury clusters
up to Hg30 were obtained using a two- plus n-dependent
three-body potential �2� 3n� for mercury in a simulated-
annealing treatment combined with a conjugated gradient
optimization [24]. From the Hessian, we obtained har-
monic frequencies to ensure that all optimized structures
are minima on the potential hypersurface. The optimized
103401-2
global minima were used in subsequent DFT calculations
applying the local density (LDA) and generalized gradient
approximation (B3LYP) [25] to obtain ionization poten-
tials, singlet-triplet gaps, and static dipole polarizabilities
for clusters up to Hg30 [26].

Figure 1 shows the ionization potentials (IP) at the DFT
level together with experimentally obtained values by
Cabaud et al. [27] and Rademann et al. [28]. The experi-
mental values are in between the values obtained by the
two DFT methods which gives great confidence for the
structures obtained by the �2� 3n�-body potential. The
trend is as one expects for closed-shell interactions. With
increasing interaction between the mercury atoms in the
cluster, the antibonding highest occupied orbital becomes
more diffuse and as a result the IP decreases. We note
that the bulk IP is at 4.49 eV [29]. Rademann et al.
concluded that around Hg70 the IPs follow the classical
electrostatic behavior for removing an electron from a
103401-2
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FIG. 3. Static dipole polarizabilities (in a.u.) dependent on the
cluster size n of Hgn.
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FIG. 2. Singlet-triplet gap (in eV) dependent on the cluster size
n of Hgn. The s-p gap obtained from photoelectron spectra of
Hg�n clusters [17] is also shown.

FIG. 4 (color online). Optimized global minima for the clusters
with magic number n � 6, 13, 19, 23, 26, and 29.
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uniformly conducting sphere. However, our calculated IPs
shown in Fig. 1 and the experimentally determined values
up to Hg70 suggest that convergence towards the bulk limit
more likely occurs beyond a few hundred mercury atoms.

Figure 2 shows the calculated singlet-triplet gap for
mercury clusters up to Hg20. Again, we see larger varia-
tions in the small cluster range up to Hg9 followed by an
almost linear decrease in the singlet-triplet (S-T) gap from
Hg9 to Hg20. Our results are in agreement with the esti-
mated band gap energies of Singh [6]. Extrapolation re-
veals that the zero gap limit (onset of metallic character) is
reached at Hg70. Such an extrapolation is, however, ques-
tionable. The data by Busani et al. [17] show a change in
the behavior of the s-p gap with increasing cluster size at
around n > 15 which is attributed to a van der Waals to
covalent binding transition. Our singlet-triplet gaps are
about 1 eV above the data by Busani et al. [17], with the
overall trend agreeing nicely for a cluster size of ten or
larger. The difference between Busani et al. and our calcu-
lated data is probably mostly due to the fact that different
reference states are used, i.e., in the experimental work
Hg�n was used as the reference state. Hg�n is more tightly
bound than neutral Hgn due to charge-induced-dipole in-
teractions. In a simple Franck-Condon picture, we expect
that the S-T gaps of the neutral species lie above the
photoelectron gap of Hg�n . Contraction of the cluster size
due to an excess electron of up to 0:35 �A was indeed
predicted by Wang et al. [30]. This implies that the s-p
gap for neutral mercury clusters probably lies above the
negatively charged ones thus pushing the metallic limit
even further toward larger cluster sizes.

Whilst the IPs and S-T gaps decrease relatively
smoothly with increasing cluster size, the calculated dipole
polarizabilities show some more detailed features. First, as
the IPs decrease with increasing cluster size, the polar-
izability increases and this overall trend is indeed seen in
Fig. 3. On the other hand, it is well known that clusters
which form a closed-shell structure within the jellium
model (magic numbers, nmagic) are least polarizable.
Figure 3 indicates that this is the case for n � 6, 13, 19,
23, 26, and 29. In fact, these numbers also show up in rmax,
the maximum Hg-Hg distance in the cluster which in-
103401-3
creases sharply at (nmagic � 1). Figure 4 shows the struc-
tures of these clusters and their high symmetry of either
spherical or ellipsoidal shapes. An interesting side aspect is
that Hg12 does not adopt the high symmetry icosahedral
(Ih) structure in contrast to Hg13 which includes a central
atom. The Ih Hg12 structure (which is a local minimum)
lies 0.195 eV above the global minimum of C5v symmetry
and can be derived from removing an outer Hg atom from
the Ih Hg13 cluster. We notice that for smaller clusters (n <
16) the cluster shapes for the global minima agree with the
series of shapes obtained for Morse clusters (�0 � 6 in
Ref. [31]). Figure 3 also indicates a relatively fast conver-
gence of the dipole polarizability towards the bulk limit
which can be estimated to be around 40 a.u. Also the
pronounced minima for magic clusters at low cluster size
(n < 15) smoothes out for larger cluster numbers.

Finally, we show in Fig. 5 the change in energy with
increasing cluster size �En � E�n� � E�n� 1� up to Hg30
103401-3
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FIG. 5. Change in cluster energy �En � E�n� � E�n� 1� (in
eV) in comparison to a Lennard-Jones behavior [32].
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for both the two-body and the �2� 3n�-body potential. It
reveals a small minimum at n � 4 and minima at the
already mentioned cluster sizes of n � 6, 13, 19, 23, 26,
and 29. For the two-body potential, computational de-
mands are not too high and calculations up to Hg40 give
further minima in �En at n � 32, 34, 37, and 39. Figure 5
also includes the results for Lennard-Jones clusters [32]
which show a remarkably similar behavior to our two-body
potential with magic numbers identical up to a cluster size
of n � 32 [33]. We note that the three-body potential is
attractive in the range between 2 and 10 �A. Thus, a com-
parison between the two-body and �2� 3n�-body poten-
tials shows increased stabilization due to the three-body
force for the clusters with magic numbers. Since we have

Ecoh � lim
n!1

�En; (3)

we observe a relatively slow convergence of �En towards
the bulk cohesive energy [0.61 eV for the �2� 3n�-body
potential] according to Fig. 5.

In conclusion, we demonstrated that by using a �2�
3n�-body potential reasonably accurate structures of
medium-sized mercury clusters can be predicted which
will be useful in future cluster dynamic studies. The most
stable structures with increasing cluster size (magic num-
bers) show up in a pronounced way in the dipole polar-
izabilities and should be confirmed by future experiments.

We acknowledge the support of the Marsden Fund
(Wellington), the Alexander von Humboldt Foundation
(Bonn), and the Auckland University Research Committee.

Note added.—While preparing this paper, an article by
Hartke, Flad, and Dolg [33] appeared on geometries of
smaller Hg clusters up to 14 atoms. Their structures are
rather unusual and do not agree with Morse or Lennard-
Jones–type structures.
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