VOLUME 89, NUMBER 10

PHYSICAL REVIEW LETTERS

2 SEPTEMBER 2002

Relation between Anomalous and Normal Diffusion in Systems with Memory

Rafael Morgado and Fernando A. Oliveira

International Center of Condensed Matter Physics and Instituto de Fisica, Universidade de Brasilia,
CP 04515, 70919-970 Brasilia DF, Brazil

G. George Batrouni

Institut Non-Linéaire de Nice, UMR CNRS 6618, Université de Nice-Sophia Antipolis, 1361 Rute des Lucioles,
F-06560 Valbonne, France

Alex Hansen

Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
(Received 7 November 2001; published 14 August 2002)

We present a simple criterion based on the Einstein relation for determining whether diffusion in
systems governed by a generalized Langevin equation with long-range memory is normal, superdiffusive,
or subdiffusive. We support our analysis with numerical simulations.
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Diffusion is one of the fundamental mechanisms for
transport of materials almost everywhere in nature and
has therefore been the focus of extensive research in
many different disciplines of natural science. Many aspects
of diffusion are, as a consequence, well understood today.
However, open questions linger on, such as how the pres-
ence of correlated disorder in the medium where the dif-
fusion takes place influences the diffusion process,
possibly making it anomalously fast or slow. This particu-
lar question has prompted much research over the last
couple of decades [1-3]. The disorder of the background
medium may induce memory effect into the diffusion
process, and it is the objective of this Letter to present an
analysis of memory effects in diffusive systems. The analy-
sis culminates in a simple criterion based on the structure
of the memory function allowing us to determine whether
the diffusion process is normal, i.e., described by a finite
diffusion constant and spreading according to the standard
diffusion constant, or whether the process is superdiffusive,
and therefore having an infinite diffusion constant, or sub-
diffusive, which entails a vanishing diffusion constant. We
demonstrate our analysis on an explicit example, and test it
against numerical simulations.

Einstein derived a famous relation between the diffusion
constant D, temperature 7', and friction vy,

_ kgT
my’
where m is the mass of the diffusing particle and kp is the

Boltzmann constant [4]. This relation is easily derived
from a normal Langevin equation (NLE) of the form [5]

ey

m%v(r) + myv(t) = F(1), 2

where v(¢) is the velocity of the random walker and F(¢) an
uncorrelated random force with properties (F(¢)) = 0 and
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(F(0)F(1)) = 2mkgTy5(t). The brackets (- - -) indicate a
thermal average. We now consider a disordered back-
ground medium. The disorder may occur in two ways.
The background may have a fixed, disordered geometrical
structure where long-range correlations may manifest
themselves, for example, through the geometrical structure
being fractal. Another way the background may be disor-
dered is through temporal correlations in the interactions
between the random walkers and the background. We
consider in the following the second type of disorder.
The NLE, Eq. (2), is then modified to a generalized
Langevin equation (GLE) of Mori-Lee form [6,7],

m%v(l) —m fo Tl = t)w(t)dn + Fo, ()

where the memory I'(¢) is related to the stochastic force
F(r) through the fluctuation-dissipation theorem

Cr(r) = (F()F(0)) = mkpTT(1). 4

For short range memory I'(z) = 2y8(¢), Eq. (3) reduces to
the NLE. For a system described by a GLE, the velocity
correlation function C,(f) = (v(r)v(0)) is a fundamental
function from which it is possible to obtain the system’s
physical properties. In particular, Kubo obtained the dif-
fusion constant as [8]

D = lim - (2(1)) = [ e, (. (5)
1—o0 2t 0
Here
,li.rg<x2(t)> o 1@ (6)

is the second moment of the position after the transient
time. For @ = 1, we have normal diffusion and D is finite.
For @ <1, D = 0, and the motion is subdiffusive. Finally,
for @ > 1, D = o0, and the motion is superdiffusive.
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Several authors have claimed that long-range correla-
tions in the fluctuating force F(r) may induce anomalous
diffusion due to the absence of a time scale [2,3,9]. It is
well known that long-range correlation functions may in-
duce anomalous behavior, such as delayed fracture [10], or
anomalous reaction rates [11], in addition to anomalous
diffusion in disordered media. Such long-range correla-
tions may even turn off the diffusion process for certain
boundary conditions [12].

In this Letter we establish the conditions for a system
described by Eq. (3) to present anomalous diffusion. We
multiply Eq. (3) by v(0) to perform an ensemble average.
Since {F(t)v(0)) = 0, we obtain

dcC,(1) t
T —f L@t = 1)C,(t))dt;. (7
4 0
We Laplace transform this expression to obtain
~ C,(0)
Cod)=—%=—~, ®)
z+T'(2)

where the tilde denotes the Laplace transform. The diffu-
sion constant Eq. (5) is then given by

C,(0)
ro "
Consequently, it is enough to know C,(0) and I'(0) to
determine the diffusion constant. Moreover, if C,(0) is
finite, the diffusion process is controlled by I'(0).

Typically, a system that satisfies the equipartition theo-
rem also satisfies the Einstein relation Eq. (1), where

D =C,(0) =

()]

y=T(0) = ﬁ * () (10)

is the friction constant. Hence, if f‘(O) is finite, the diffusion
is the normal Einstein diffusion, and, consequently, it does
not matter if the system has long time correlation or if the
correlations are scale invariant. What does matter are the
convergence properties of the integral (10).

We assume now that I'(¢) ~ ¢t #, leading to

[(z) ~z#7N (11)

Since z plays the role of an inverse cutoff time scale in the
Laplace transform,

- 0 , 1/z
(o) = [ e~ T()df! ~ f T(dr,  (12)
0 0
we see that
T(1/1) ~ "B, (13)

Hence, using Eq. (9), we find that D=
lim,_.,, C,(0)/T°(1/1t) = t8~!. Using Egs. (5) and (6), we
find that

a=p. (14)
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Thus, knowing how I'(#) behaves as ¢t — oo, or equiva-
lently, how I'(z) behaves as z — 0 determines a.

We now demonstrate these ideas on an explicit system.
Consider a noise described by a bath of thermal oscillators
of the form

F(t) = fooo A(w) cos[wt + ¢(w)]dw, (15)

where A(w) is obtained from the power spectrum. The
random function ¢(w), where 0 = ¢(w) < 277, gives the
stochastic character to the function F(z). The system now
has a fixed temperature T and a fluctuating energy; i.e., we
are dealing with a canonical ensemble. The force correla-
tion function is

Cr(t) = (F()F(0)) = mkyT fo " (@) cos(wn)dw, (16)

where p,(w) = A*(w)/(2mkyT) is the noise density of
states (NDS) of the thermal bath. Let us note that Eq. (16)
shows C(#) to be an even function of ¢ and that I'(¢) is even
as well. This result was pointed out by Lee for Hamiltonian
(i.e., microcanonical) systems [13]. We have hence pointed
out here the validity of this observation for a canonical
system.
We can explore once more Eq. (9) if we rewrite

= [ z 7
y = 1(0) = tim fo p1(@) oz dw = 2 p, 0). (17

Now we see that the NDS in the long-wavelength limit
controls the diffusion. Note that it is necessary to know the
NDS only to classify the diffusion process.

Consider the following NDS:

C forw<ws}

pul@) = { 0, forw> wg | (18)

Here C is a constant. This corresponds, e.g., to the long-
wavelength limit of one-dimensional acoustic phonons.
For a noise originated from a coupled harmonic chain,
wy is the Debye phonon frequency.

We calculate the memory function for this system and
find

() - 205 (st

T wgt

19)

Using Eq. (10), we find that y = y*. For superdiffusive
systems, this relation may not hold; see Eq. (22). Note that
this memory function has a #~! behavior for large t.
Laplace transforming Eq. (19) gives

I'(z) = LA arctan(ﬂ ) (20)

T Z
Using Egs. (11) and (14), we see that & = 1; i.e., we have
normal diffusion. Furthermore, we find the same diffusion
constant as the NLE with friction I'(0) = 7. Also, note that
the limit z — 0 in Eq. (20) is equivalent to the limit w g —
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co. However, wg — oo implies I'(z) = 2y5(¢r), Eq. (3) re-
duces to the NLE, and, as expected, Eq. (9) reduces to the
standard FEinstein relation, Eq. (1). Rather than being a
coincidence, this is a very general property.

We plot in Fig. 1 C,(¢) here for T = 0.08, y* = 0.25,
and wg = 0.5 or 5, giving a ratio wg/y* = 2 or 20, re-
spectively. This measures the importance of the memory
effects, which decreases with increasing ratio. Curves 1(a)
and 1(b) have wg = 0.5, while curve 1(d) has wg = 5.
Curve 1(a) shows numerical integration of Eq. (7), and
curve 1(b) shows simulation of Eq. (3) using 1000 random
walkers with independent sequences of noise. Curve 1(c)
shows the behavior of a system without memory, while
curve 1(d) shows simulation of Eq. (3). The oscillatory
behavior for large ¢ for the curves with small ratio is clear.
Curve 1(d), with wg/y* = 20, is, for all practical purposes,
indistinguishable from wg¢ — o0. This is clear as curve 1(c)
is based on an infinite ratio so that C,(r) = exp(—y*1).
There is a tremendous difference between curves (a), (b),
(c), and (d) in Fig. 1, however, they all show the same
normal diffusive behavior.

We now modify the NDS Eq. (18) by removing the lower
part of the acoustic modes,

palw) = { @1

C, forw; <w<wg
0, otherwise

Here w; < wy is a finite frequency. This density of states
yields

() — 2_;/-*<sin(w5t) _sin(w 1) > 22)

t t

We use now y* = 0.25, i.e., the same value used before.
However, the reader should keep in mind that y* # y = 0.

cy(t)

02 L L L L L L L L L

FIG.1. C,(¢) as a function of time ¢. We have set T = 0.08 and
v* = 0.25. Curve (a) shows numerical integration of Eq. (7), and
curve (b) shows simulation of the GLE using 1000 random
walkers and independent sequences of noise. wg was set to
0.5. Curve (c) shows the behavior of a system without memory,
while curve (d) shows simulation of the GLE for wg = 5.
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Now, considering Egs. (9), (17), and (21), we predict that
Eq. (22) shows superdiffusive behavior. In particular, for
small z values, we find from Eq. (21) that I'(z) « z(1/w; —
1/wyg). Using Egs. (11) and (14), we determine a = 2 for
this system.

In Fig. 2 we plot (x*(¢)) against . The random walkers
start from rest at the origin. Curve 2(a) shows the simu-
lations of Eq. (3) with the NDS given by Eq. (18), using
wg = 0.5, while curve 2(b) shows the corresponding curve
for the system without memory. In curve 2(c) we simulate
Eq. (3) with the NDS given by Eq. (22), with w; = wg/2;
i.e., we exclude the lower half of the noise spectrum in such
a way that p,(0) = 0. The computer code used for the
curves 2(a) and 2(c) is the same, except for the density
range of frequencies. After the transient period all curves
exhibit the behavior predicted by Eq. (6). Curves (a) and
(b) in Fig. 2 show a straight line and hence a = 1, with
D = 0.35 and D = 0.32, respectively, which is very close
to the exact value D = 0.32. Curve 2(c) shows a parabolic
behavior with @ = 1.98 = 0.01, i.e., a superdiffusive be-
havior, as predicted above. o = 2 is the limit for ballistic
motion.

Now we return to our main variable, i.e., the velocity
correlation function C,(¢) that can be obtained as the
inverse of the Laplace transform Eq. (8). Time reversal
symmetry implies for C,(¢) a relation similar to Eq. (16),

(1) ~ fo " () cos(wi)dw: 23)

1.e., it can be associated with a Fourier transform with a
density of states (DOS) p(w). Equations (8) and (17) show
that

pal@=0)~ p~'(w=0). 24)

100

<C(t)>
>
T

t

FIG. 2. {x%(¢)) vs t. Curve (a) shows a simulation of the GLE,
with wg = 0.5 and a NDS given in Eq. (18), while curve () is
for the system without memory. Curve (c) shows a simulation of
the GLE with a NDS given in Eq. (22), with w; = wg/2. In this
case we find superdiffusive behavior.
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For the lowest modes, the DOS for the velocity correlation
function is proportional to the inverse of the NDS. For
example, Florencio and Lee [12] studied diffusion in a
classical harmonic chain using a Hamiltonian formulation.
They showed that the absence of the zero mode causes the
diffusion constant to vanish. The equivalent of that in our
case is an infinite NDS giving a zero value for Eq. (9).

So far we have obtained direct and clean results such as
Eq. (17) which displays a relation between diffusive
mechanisms and the NDS. Such a simple relation can be
useful both theoretically and experimentally. We now ad-
dress the rather controversial relation of this to experiments
and consider spin diffusion in one-dimensional systems.
Anderson, in his landmark paper [14], suggested the ab-
sence of spin diffusion in certain random lattices. On the
other hand, the presence of low-temperature extended
long-wavelength Goldstone modes in random magnets
contradicts his conclusion [15]. Evangelou and Katsanos
[16] have performed accurate numerical simulations for
1D lattices and showed the presence of superdiffusion
associated with delocalization of the spin waves, i.e., a
DOS of the form p(w) = @™ * (0 < u < 1). Fluctuations
in the density of states (FDS) decrease when the DOS
increases [16]. Thus the classical NDS must be associated
with the quantum fluctuations and, consequently, with the
FDS which approaches zero for superdiffusion. From
Moura et al. [17] data for FDS we get two regimes, u ~
0.5 and p ~ 1, which from Eq. (11), & = a + 1, allow us
to predict &« = 1.5 and o = 2.0 in perfect agreement with
their results.

In conclusion, the results presented here are quite
general and do not depend on complicated calculations
or simulations. We showed that long-range memory does
not necessarily imply anomalous diffusion. To classify the
diffusion one need only know the quantity lim,_,, I'(z). For
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systems described by a thermal bath generating harmonic
noise, the NDS for the long-wavelength modes, p(0),
determines the process.
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