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Option Pricing Formulas Based on a Non-Gaussian Stock Price Model
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Options are financial instruments that depend on the underlying stock. We explain their non-Gaussian
fluctuations using the nonextensive thermodynamics parameter q. A generalized form of the Black-
Scholes (BS) partial differential equation and some closed-form solutions are obtained. The standard BS
equation (q � 1) which is used by economists to calculate option prices requires multiple values of the
stock volatility (known as the volatility smile). Using q � 1:5 which well models the empirical
distribution of returns, we get a good description of option prices using a single volatility.
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FIG. 1. Distributions of log returns over 1 min intervals for
ten high-volume stocks, normalized by the sample standard
deviation. Also shown is the Tsallis distribution of index q �
1:43 (solid line) which provides a good fit to the data. Dashed
model, exhibit volatility smiles very close to those ob- line: standard Gaussian model.
Although empirical stock price returns clearly do not
follow the log-normal distribution, many of the most fa-
mous results of mathematical finance are based on that
distribution. For example, Black and Scholes (BS) [1] were
able to derive the prices of options and other derivatives of
the underlying stock based on such a model. An option is
the right to buy or sell the underlying stock at some set
price (called the strike) at some time in the future. While of
great importance and widely used, such theoretical option
prices do not quite match the observed ones. In particular,
the BS model underestimates the prices of options in
situations when the stock price at the time of exercise is
different from the strike. In order to match the observed
market values, the BS model would need to use a different
value of the volatility for each value of the strike. Such
‘‘implied volatilities’’ of options of various strike prices
form a convex function known as the ‘‘volatility smile.’’

Indeed, attempts have been made to modify the BS
model in ways that can correct for the smile effect (cf. [2]
or more recently [3,4]). However, those approaches are
often very complicated or rather ad hoc and do not result
in manageable closed-form solutions, which is the forte of
the BS approach. In this Letter we do, however, succeed in
developing a theory of non-Gaussian option pricing which
allows for closed-form solutions for European options,
which are such that can be exercised exclusively on a fixed
day of expiration and not before (as is the case for
American options).

Our approach uses stochastic processes with statistical
feedback [5] as a model for stock prices. Such processes
were recently developed within the Tsallis generalized
thermostatistics [6]. The driving noise can be interpreted
as a generalized Wiener process governed by a Tsallis dis-
tribution of entropic index q. In the limit q! 1 the stand-
ard model is recovered. For q � 1:5, this model closely fits
the empirically observed distribution for many financial
time series, such as stock prices [7] (Fig. 1), SP500 index
[7,8], FX (foreign exchange) rates, etc. This is consistent
with a cumulutive distribution having power tails of index
3 [9]. We derive closed-form option pricing formulas,
reproducing prices which, relative to the standard BS
0031-9007=02=89(9)=098701(4)$20.00 
served empirically (Fig. 4). Note that q � 1:5 is a good
model of hydrodynamic turbulence on small scales [10],
reinforcing notions of a possible analogy between these
two systems.

The standard model for stock prices is S�t� t0� �
S�t0�eY�t�, where Y�t� � lnS�t� t0�= lnS�t0� follows

dY � 	dt� 
d!: (1)

The drift	 is the mean rate of return and 
2 is the variance
of the stock logarithmic return. The noise ! is a Brownian
motion defined with respect to a probability measure F. It
is a Wiener process and satisfies EF�d!�t�d!�t0�	 �
dtdt0��t
 t0�, where the notation EF� 	 means the expect-
ation value with respect to the measure F. This model
yields a Gaussian distribution for Y resulting in a log-
normal distribution for S. Within this framework, Black
and Scholes were able to establish a pricing model to
obtain the fair value of options on the underlying stock S.
2002 The American Physical Society 098701-1
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FIG. 2. Calibrated so that the options are priced equally for
S�0� � K, the difference between the q � 1:5 model and the
standard BS model is shown, for S�0� � 50 and r � 0:06. Solid
line: T � 0:6 with 
 � 0:3 for q � 1 and 
 � 0:297 for q �
1:5. Dashed line: T � 0:05 with 
 � 0:3 for q � 1 and 
 �
0:41 for q � 1:5. Times are expressed in years; r and 
 are in
annual units.

VOLUME 89, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 AUGUST 2002
In this Letter we assume that the log returns Y�t� �
lnS�t� t0�= lnS�t0� follow

dY � 	dt� 
d	 (2)

with respect to the time scale t. Here 	 evolves according
to the statistical feedback process [5]

d	 � P�	��1
q�=2d!: (3)

The probability distribution P satisfies the nonlinear
Fokker-Planck equation

@
@t
P�	; t j 	0; t0� �

1

2

@

@	2 P
2
q�	; t j 	0; t0�: (4)

Explicit solutions for P are given by Tsallis distri-
butions [11]

Pq�	; t j 	�0�; 0	 �
1

Z�t�
f1
 ��t��1
 q�

 �	�t� 
	�0�	2g1=�1
q�: (5)

Choosing ��t� � c�1
q�=�3
q���2 
 q��3 
 q�t	
2=�3
q�

and Z�t� � ��2
 q��3
 q�ct	1=�3
q� ensures that the
initial condition Pq � ��	�t� 
	�0�	 is satisfied. The
q-dependent constant c is given by c � �Z2 with Z �R
1

1�1
 �1
 q��	2	1=�1
q�d	 for any �. With 	�0� �

0, we obtain a generalized Wiener process, distributed
according to a zero-mean Tsallis distribution. In the limit
q! 1 the standard theory Eq. (1) is recovered, and Pq
becomes a Gaussian. We are concerned with the range 1 �
q < 5=3 in which positive tails and finite variances are
found [12]. The distribution for lnS becomes

Pq�lnS�t� t0�; t� t0 j lnS�t0�; t0	

�
1

Z�t�

�
1
 ~���t��1
 q�

�
ln
S�t� t0�
S�t0�


	t
�
2
�
1=�1
q�

(6)

with ~�� � ��t�=
2. This implies that log returns ln�S�t�
t0�=S�t0�	 over the time scale t follow a Tsallis distribution,
consistent with empirical evidence for several markets,
e.g., S&P500 (Fig. 1) [7,8], with q � 1:5.

Our model exhibits a feedback from the macroscopic
level characterized by P to the microscopic level charac-
terized by 	. We can imagine that this is really due to the
interactions of many individual traders whose actions all
contribute to shocks to the stock price which keep it in
equilibrium. Their collective behavior yields a nonhomo-
geneous reaction to returns: rare events (i.e., extreme re-
turns) will be accompanied by large reactions and will tend
to be followed by large returns in either direction.

Using Ito calculus [13,14], the equation for S follows
from Eq. (2) as

dS � ~		Sdt� 
Sd	; (7)

where ~		 � 	� 
2

2 P
1
q
q : The term 
2

2 P
1
q
q is the noise

induced drift. Remember that Pq is a function of 	 with
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	�t� �
lnS�t�= lnS�0� 
	t



(8)

(with t0 � 0 for simplicity). As in the standard case
(cf. [2]), the noise term driving S is the same as that driving
the price f�S� of a derivative of the underlying stock. It
should be possible to invest one’s wealth in a portfolio of
shares and derivatives such that the noise terms cancel each
other, yielding a risk-free portfolio, the return on which
must be the risk-free rate r. This results in a generalized BS
partial differential equation (PDE)

@f
@t

� rS
@f
@S

�
1

2

@2f

@S2

2S2P1
q

q � rf; (9)

where Pq�	�t�	 evolves according to Eq. (4). For q! 1
the standard case is recovered. This PDE depends explic-
itly only on the risk-free rate and the variance, not on 	,
but it does depend implicitly on 	 through Pq�	�, with 	
given by Eq. (8). Therefore, to be consistent with risk-free
pricing theory, we should first transform our original sto-
chastic equation for S into a martingale before we apply the
above analysis. This will not affect our results other than
that ~		 will be replaced by the risk-free rate r, ultimately
eliminating the dependency on 	. We now show how this
is done.

The discounted stock price G � e
rtS follows dG �
� ~		 
 r�Gdt� 
Gd	, where d	 follows Eq. (3). For
there to be no arbitrage opportunities, risk-free asset pric-
ing theory requires that this process be a martingale, which
it is not due to the drift term � ~		 
 r�Gdt. One can, how-
ever, define an alternative driving noise z associated with
an equivalent probability measureQ so that, with respect to
098701-2
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the new noise measure, the discounted stock price has zero
drift and is thereby a martingale. Explicitly,

dG � � ~		 
 r�Gdt� 
GP�1
q�=2d!: (10)

Here, P is a nonvanishing bounded function of 	. With
respect to the initial noise !, 	 relates to S via Eq. (8).
That is why for all means and purposes, P in Eq. (10) is
simply a function of S (or G), and the stochastic process
can be seen as a standard state-dependent Brownian one.
As a consequence, both the Girsanov theorem (which
specifies the conditions under which we can transform
from the measure F to Q) and the Radon-Nikodym theo-
rem (which relates the measure F to Q) are valid, and we
can formulate equivalent martingale measures much as in
the standard case [15–17]. We rewrite Eq. (10) as

dG � 
GP�1
q�=2dz; (11)
where the new driving noise term z is related to ! through

dz �
� ~		 
 r�


P�1
q�=2
q

dt� d!: (12)

With respect to z, we thus obtain dG � 
Gd	 with d	 �

P�1
q�=2
q dz which is none other than a zero-mean Tsallis

distributed generalized Wiener process, completely analo-
gous to the one defined in Eq. (3). Transforming back to S
yields dS � rdt� 
Sd	:Compared with Eq. (7), the rate
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FIG. 3. Using the q � 1:5 model [with 
 � 0:3, S�0� � 50,
and r � 0:06] to generate call option prices, one can back out the
volatilities implied by a standard q � 1 BS model. T � 0:1
(circles); T � 0:4 (triangles).
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of return ~		 has been replaced with the risk-free rate r. This
recovers the same result as in the standard asset pricing
theory. Consequently, in the risk-free representation,
Eq. (8) becomes

	�t� �
1




�
lnS�t�
lnS�0�


 rt�

2

2

Z t

0
P1
q
q �	�s�	ds

�
: (13)

This eliminates the dependency on 	 which we alluded to
in the discussion of Eq. (9). As discussed later on, by
standardizing the distributions Pq�	�s�	 we can explicitly
solve for 	�t� as a function of S�t� and r.

Suppose that we have a European option C which de-
pends on S�t�, whose price f is given by its expectation
value in a risk-free (martingale) world as f�C� �
EQ�e
rTC	. We assume the payoff on this option depends
on the stock price at time T so that C � h�S�T�	. After
stochastic integration of Eq. (11) to obtain S�T� we get

f � e
rTEQ
�
h
�
S�0� exp

�Z T

0

P�1
q�=2

q dzs

�
Z T

0

�
r



2

2
P1
q
q

�
ds
���

:

(14)

The key point is that the random variable
R
T
0 P

�1
q�=2
q dzs �R

T
0 d	�s� � 	�T� follows the Tsallis distribution Eq. (5).

This gives
f �
e
rT

Z�T�

Z
R
h
�
S�0� exp

�

	�T� � rT 



2

2
!T2=�3
q�

� �1
 q�!T2=�3
q� ��T�
2


2	2�T�
��

�1
 ��T��1
 q�	�T�2	1=�1
q�d	T (15)

1 �q
1�=�3
q�
with ! � 2 �3
 q���2
 q��3
 q�c	 . We have
utilized the fact that each of the distributions P�	�s�	
occurring in the latter term of Eq. (14) can be mapped
onto the distribution of 	�T� at time T via the appropriate
variable transformations 	�s� �
																						
��T�=��s�

p
	�T�. A ma-

jor difference to the standard case is the 	2�T� term which
is a result of the noise induced drift. With q � 1, the
standard option price is recovered [15].
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FIG. 4. A comparison of option prices from a q � 1:5 model
and traded prices is given by a comparison of volatility smiles.
(a) Implied volatilities for options on British pound futures (last
trading date 7 December 2001) [18] vs strike [for S�0� � 143,
r � 0:065, T � 0:0055 (2 days)] (symbols); implied volatilities
needed for a q � 1 BS model to match prices from a q � 1:5
model using 
 � 0:1445 across all strikes (line). (b) Implied
volatilities for S&P500 futures [SX June, last trading date
15 June 2001, S�0� � 1275, r � 0:065, T � 0:027 (10 days)]
(symbols); implied volatilities from the q � 1:5 model with 
 �
0:3295 (line).

098701-3



VOLUME 89, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 AUGUST 2002
Equation (15) is valid for an arbitrary payoff h. We
evaluate it explicitly for a European call option, which
gives the holder the right to buy the stock S at the strike
price K, on the day of expiration T. The payoff is C �
max�S�T� 
 K; 0	. Only if S�T� > K will the option have
value at expiration T (it will be ‘‘in the money’’). The price
c of such an option becomes

c � EQ�e
rTC	 � EQ�e
rTS�T�	D 
 EQ�e
rTK	D
� J1 
 J2; (16)

where the subscript D stands for the set fS�T� > Kg.
This condition is met if 
 
2

2 !T
2=�3
q� � �1
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q�!T2=�3
q� ��T�
2 
2	2 � 
	� rT > lnK=S�0�; which is

satisfied for 	 between the two roots s1 and s2 of the
corresponding quadratic equation. This is a very different
situation from the standard case, where the inequality is
linear and the condition S�T� > K is satisfied for all values
of the random variable greater than a threshold. In our case,
due to the noise induced drift, values of S�T� in the risk-
neutral world are not monotonically increasing as a func-
tion of the noise. As q! 1, the larger root s2 goes toward
1, recovering the standard case. But as q increases, the
tails of the noise distribution get larger, as does the noise
induced drift which tends to pull the system back. As a
result we obtain
J1 � S�0�
1

Z�T�

Z s2

s1

exp

�

	



2

2
!T2=�3
q� 
 �1
 q�!T2=�3
q� ��T�

2

2	2

�
�1
 �1
 q���T�	2�1=�1
q�d	; (17)
J2 � e
rTK
1

Z�T�

Z s2

s1

�1
 �1
 q���T�	2	1=�1
q�d	:

(18)

Equation (16) with Eqs. (17) and (18) constititutes a
closed-form expression for the price of a European call. We
calculated option prices for different values of the index q
and studied their properties as a function of the relevant
variables such as the current stock price S�0�, the strike
price K, time to expiration T, the risk-free rate r, and 
.
The results obtained by our closed-form pricing formula
were confirmed both by implicitly solving the generalized
BS PDE (9) and via Monte Carlo simulations of Eq. (11).
Note that American option prices can be solved numeri-
cally via Eq. (9).

We compare results of the standard model (q � 1)
with those obtained for q � 1:5, which fits well to real
stock returns. Figure 2 shows the difference in call price.
In Fig. 3, the BS implied volatilities (which make the
q � 1 model match the q � 1:5 results) are plotted as a
function of K. The asymmetric smile shape, which is more
pronounced for shorter times, reproduces well-known
systematic features of the volatility smile that appears
when using the standard q � 1 model to price real options.
In Fig. 4, the volatility smiles for actual traded op-
tions on BP and S&P 500 futures is shown together with
those resulting from our model using q � 1:5. These re-
sults are encouraging, and we are currently studying a
larger sample of options data. Empirical work is required
to see if arbitrage opportunities can be uncovered that do
not appear when the standard model is used. Another
potential application will be with respect to option repli-
cation and hedging.
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