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Shear-Induced Stress Relaxation in a Two-Dimensional Wet Foam
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We report on experimental measurements of the flow behavior of a wet, two-dimensional foam under
conditions of slow, steady shear. The initial response of the foam is elastic. Above the yield strain, the
foam begins to flow. The flow consists of irregular intervals of elastic stretch followed by sudden
reductions of the stress, i.e., stress drops. We report on the distribution of the stress drops as a function of
the applied shear rate. We also comment on our results in the context of various two-dimensional models
of foams.
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assumptions concerning the source of dissipation in foams
and treating foams with different degrees of ‘‘dryness.’’
Distinguishing between these different models, and their

rearrangements in two-dimensional model foams [15,16]
and three-dimensional foams [17]. The work in Ref. [17]
made indirect measurements of the bubble rearrangements
Foams are ubiquitous in nature [1] and part of a larger
class of materials which exhibit a type of behavior that has
come to be called ‘‘jamming’’ [2–4]. Loosely speaking, a
‘‘jammed’’ material is one that is unable to flow, typically
due to the packing of the constituent particles. For the case
of foams, which are composed of gas bubbles separated by
fluid walls, the jamming is a consequence of the topologi-
cal constraints that develop as the bubbles press against
each other. The existence of a jammed state contributes to
the complex flow behavior of foams. This flow behavior is
one reason that foams are so interesting from both a
fundamental and an applied point of view [1]. For suffi-
ciently small strains or stresses, a foam acts as an elastic
solid (the jammed state). However, when the strain (or the
stress) exceeds a critical value, known as the yield strain, a
foam begins to flow. Of particular interest is the flow
behavior of foams for small rates of strain. This flow occurs
through ‘‘avalanches,’’ or sudden nonlinear rearrange-
ments of the bubbles in the foam that correspond to a
decrease in the average energy, or stress, of the foam. In
this paper, we will refer to these events as ‘‘stress drops.’’
This type of behavior is common to many jammed systems
where flow occurs in an irregular or stick-slip type manner
when the system is near the transition to jamming [5]. One
of the outstanding questions for flowing foams is the nature
of the distribution of the sizes of the stress-drops during
this irregular flow.

One issue is that predictions for the distribution of stress
drop sizes are model dependent [6–13]. All of these sim-
ulations predict the same qualitative behavior for the mac-
roscopic flow for the sufficiently small rates of strain that
was described above: elastic behavior below a yield strain
and nonlinear bubble rearrangements above the yield
strain. However, the quantitative predictions for the size
distribution and frequency of these events are model de-
pendent. The dependence is predominately due to different
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underlying assumptions, experimentally is an important
step in our understanding of foam rheology.

Two-dimensional foams may be characterized by the
area fraction of gas �. For �< 0:84, foams ‘‘melt’’ into
a froth of exclusively circular bubbles. Near this transition,
where bubbles are predominately circular, a foam is said to
be ‘‘wet.’’ In the limit, � approaches 1, the bubbles become
polygonal with infinitely thin walls, and a foam is said to
be ‘‘dry.’’ The simulations studied by Kawasaki et al. [6–8]
are based on the vertex models of foams. This model is
applicable to dry foams and unlikely to apply to the wet-
foam system studied in this work. The simulations of
Weaire et al. [11,12] focus on the behavior of foams under
quasistatic, extensional flow. For this paper, we will refer to
this work as the ‘‘quasistatic model’’ to distinguish it from
the other two models considered. These simulations are
applicable to wet foams and, because they are quasistatic,
contain no dissipation. The number of T1 events, a topo-
logical change that involves the switching of neighbors
between bubbles, is measured. Reference [12] reports
events that include large numbers of T1 events, implying
a distribution of stress drop with a power-law-like behav-
ior. In contrast, the ‘‘bubble model’’ proposed by Durian,
which is also applicable to a wet foam, predicts power-law
distributions with an exponential cutoff [9,10]. This model
includes viscous dissipation between bubbles. Further
work on the bubble model demonstrated a weak depend-
ence of the exponential cutoff on area fraction [14]; how-
ever, true power-law behavior was never observed, even
extremely close to the melting point [14]. Simulations of a
‘‘q-Potts model’’ of a sheared foam [13] did not assume a
particular form for the dissipation. This work suggests that
the distribution of topological rearrangements is not
power-law-like; however, the distribution of energy drops
may be consistent with power-law behavior [13].

There has been limited experimental work on bubble
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and concluded that only local rearrangements occurred
during flow. There are various types of two-dimensional
foams. The work in Ref. [15] used Langmuir monolayers to
form two-dimensional foam. A Langmuir monolayer con-
sists of a single layer of molecules confined to the air-water
interface. A Langmuir monolayer foam involves ‘‘true’’
two-dimensional bubbles of the gas phase of the monolayer
separated by walls of the fluid phase. This work directly
measured the distribution of T1 events and concluded that
the size distribution was not consistent with a power law. In
contrast, the work in Ref. [16] used a single layer of three-
dimensional bubbles trapped between a glass plate and a
water surface. When studying flow using this system, one
has to be careful with the interaction between the bubbles
and the confining plates. This work focused on the bubbles
whose topological class had changed, and the results sug-
gest that very large events can occur.

The apparent discrepancies in these measurements may
not be as severe as it first appears. Detailed simulations of
both the bubble model and the q-Potts model show that the
size of T1 events and the number of bubbles involved in a
rearrangement are not necessarily correlated [13,14]. Also,
work on the q-Potts model suggests that the number of T1
events is not correlated with the size of a stress drop [13].
This is reasonable when one considers that not all T1
events will relieve an equivalent amount of stress.
Therefore, to address the question of the scaling of the
size distribution, it is critical to have direct measurements
of the stress or energy drops. We have accomplished this
for the case of a third type of two-dimensional foam: a
bubble raft [18,19].

A bubble raft consists of a single layer of bubbles placed
on the surface of water. Bubble rafts have been used to
model the flow behavior of amorphous solids [18,19]. The
bubble rafts are an ideal system for the study of two-
dimensional foams for a number of reasons. They allow
for both direct measurements of the macroscopic proper-
ties of the foam and the bubble dynamics. There are no
confining glass plates, which can add complications as the
shear rate is increased. Finally, one can control both the
degree of order in the foam (by varying the distribution of
bubble sizes) and the density of the foam with great
precision. In this paper, we report on the flow behavior of
a disordered bubble raft with � � 0:9.

We generate flow of the bubble raft using a two-dimen-
sional Couette viscometer that is described in detail in
Ref. [20]. The apparatus consists of two concentric cylin-
ders oriented vertically. Water is placed between the cyl-
inders, and the upper surface of the water is free. The outer
cylinder consists of 12 individual pieces, so it can be
expanded and compressed to adjust the density of the
bubble raft. The working radius of the outer cylinder was
7.43 cm. The inner cylinder is two pieces: a solid cylinder
placed in the water and a second piece that is in contact
with the bubble raft and fits over the solid cylinder. The
second piece is hung by a torsion wire and is used to
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measure the stress � on the inner rotor due to the bubble
raft. It is important to note that this is a ‘‘two-dimensional
stress’’ given by the force on the inner rotor in the tangen-
tial direction divided by the circumference of the rotor.
Therefore, in terms of the torque � on the rotor and the
radius of the rotor r, the stress is given by � � �=2	r2.
The radius of the inner cylinder was 3.84 cm. A constant
rate of strain is applied to the system by rotating the outer
cylinder at a constant angular speed in the range 0.0005 to
0:01 rad=s.

The stress on the inner cylinder is determined from
the angular displacement of the torsion wire supporting
the inner cylinder. The angular displacement was measured
using magnetic flux. A coil was attached to the torsion wire
and suspended within a high-frequency magnetic field.
The induced voltage was used to determine the angle
of the coil. Typical values of the angle during shear ranged
from 22� to 40�, corresponding to stresses in the range
of 4–23 dyne=cm. The resolution in stress was set by our
resolution in angular measurement and the torsion
constant, 
 � 570 dyne cm=rad. The voltage signal was
digitized using a 12-bit A to D converter in the computer.
As a test of the noise level in the signal, the stress
was monitored as a function of time without shear.
In the absence of shear, the noise in the measured stress
signal was at the level of the lowest bit in digitized
signal, corresponding to changes in the stress of
�0:026 dyne=cm. Therefore, when measuring the changes
in the stress, changes of �0:026 dyne=cm were ignored,
providing a lower limit on the size of the stress drops.

The bubble raft is generated by flowing nitrogen through
a solution of 44% by weight glycerine, 28% by weight
water, and 28% by weight Miracle Bubbles (Imperial Toy
Corp.). The bubble size is fixed by the pressure and needle
diameter. For the experiments reported on here, three
different size bubbles (2, 3, and 5 mm) were used, with
approximately 500 bubbles of each size. The experiments
were carried out over 2 h. The coarsening of the foam
without shear was monitored during this time, and no
significant coarsening or stress drops due to coarsening
were observed. However, after 2 h, the stability of the foam
deteriorated rapidly, and shear resulted in the severe rup-
ture of bubbles.

Figure 1 is an image of a section of the bubble raft
between the two cylinders. The bubble raft was monitored
for slippage at both the outer and inner cylinders. For all of
the experiments reported here, there was no slip between
the first row of bubbles and the corresponding cylinder.
Also, it was clear from the images that the stress drop
events corresponded to rearrangements of the bubbles in
the bulk of the foam. The average azimuthal velocity
distribution was consistent with what one would expect
for Couette flow. This is illustrated in Fig. 2 for the fastest
rotation rate, 0:01 s�1. The dashed line is the theoretical
velocity profile for a Newtonian fluid, and the solid curve is
the theoretical velocity profile for a shear-thinning fluid
098303-2
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FIG. 3. Plot of the stress versus strain for a rate of strain of
3:1� 10�3 s�1.

FIG. 1. This is an image of one section of a typical bubble raft.
Part of both the inner and the outer cylinder is visible. The black
scale bar in the lower right corner is 3.6 mm.
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with a viscosity given by � � m _

n�1, where m is a con-
stant, _

 is the shear rate, and n � 1=3 [21]. The fact that
the velocity profile is consistent with the expected shear-
thinning profile, and not the velocity profile of the water
substrate, is strong evidence that the foam is acting inde-
pendently of the water [22]. Because the rate of strain
varies as a function of radius, all reported values for rates
of strain are taken at the inner cylinder. Finally, it should be
noted that this is very different behavior from that observed
for two-dimensional foams confined between glass plates.
In this case, exponential decay of the velocity profile was
observed [24].

Figure 3 shows a typical response of the bubble raft to
shear. The stress on the inner cylinder is shown as a
function of the applied strain for a rate of strain of 3:1�
10�3 s�1. The two key features to notice are the initial
elastic region where the stress increases linearly with strain
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FIG. 2. Plot of average azimuthal speed of the bubbles versus
radial position (solid symbols). The solid line is the theoretical
velocity profile for a shear-thinning fluid with n � 1=3 (see the
text for details), and the dashed line is the theoretical profile for a
Newtonian fluid.
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and the subsequent region in which flow occurs. The
intermittent nature of the flow is obvious in this plot. The
yield strain was always of the order of 1 for all rates of
strain. For the lowest rates of strain, both the maximum
stress and the average stress were essentially independent
of the rate of strain, suggesting a quasistatic limit.

Figure 4 shows the distribution of the stress drops
for three different rates of strain. Here the size of
the drop is normalized by the average stress per bubble.
Also, as discussed above, any change in stress of
�0:026 dyne=cm was ignored and does not enter into the
plotted distribution. The distribution of stress drops is not
consistent with a power law for all length scales; however,
for small stress drops, the distribution is consistent with a
power law with an exponent of �0:8. For comparison, the
exponent predicted for the bubble model is �0:70� 0:05
[10]. Also, as predicted by the bubble model [14], the
distribution is essentially independent of the rate of strain
for small stress drops, providing further evidence of a
quasistatic limit. Such a limit is particularly important for
our geometry where the rate of strain varies across the
system. The large stress drop cutoff is weakly dependent
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FIG. 4. Distribution of stress drops for three different rates of
strain. Solid triangles are a rate of strain of 0:031 s�1, solid
squares are a rate of strain of 0:31 s�1, and open circles are for a
rate of strain of 0:48 s�1. The solid line has a slope of �0:8 and
is a guide to the eye.
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on the rate of strain. This is difficult to see from Fig. 4, but
is made clear by considering the average stress drop size.
For example, for a rate of strain of 0:031 s�1, the average
stress drop (normalized by the average stress per bubble) is
27.9, whereas, it is 47.0 for a rate of strain of 0:31 s�1.

We have conclusively demonstrated that the general
features of the distribution of stress drops observed in the
bubble raft are in agreement with the simulations of the
bubble model reported in Refs. [10,14]. Specifically, the
cutoff in the distribution for large stress drops is clear.
Also, the viscosity of the bubble raft is consistent with a
shear-thinning fluid with an exponent of 1=3. Finally, the
distribution of stress drops, particularly for the small stress
drops, is essentially independent of the rate of strain for the
values studied here. It should be noted that two versions of
the bubble model exist: a local dissipation and a mean field
version. However, for the issues studied here, the two
versions agree [14].

A number of important questions remain. First, what
is the correspondence between the size of the stress drops
and the number of bubbles that exchange neighbors? It
is still possible that the larger stress drops are due to
rearrangements involving a wide distribution of the num-
ber of bubbles, as reported for the q-Potts model [13].
Therefore, ‘‘system-wide’’ events are still a possibility.
The current imaging system was not appropriate for careful
tracking of bubbles throughout the system. Future im-
provements in the imaging of this system will enable this
question to be addressed. Based on the bubble model, the
system size should be large enough to avoid finite size
effects. However, a detailed study of system size is still
necessary given the existence of a cutoff in the distribution
of stress drops to better understand the source of this cutoff.
Of particular importance is the behavior as a function of
area fraction to distinguish further between the predictions
of the quasistatic simulations [11,12] and the bubble model
[10,14].
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