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We present a general technique for hiding a classical bit in multipartite quantum states. The hidden bit,
encoded in the choice of one of two possible density operators, cannot be recovered by local operations
and classical communication without quantum communication. The scheme remains secure if quantum
communication is allowed between certain partners, and can be designed for any choice of quantum
communication patterns to be secure, but to allow near perfect recovery for all other patterns. No
entanglement is needed since the hiding states can be chosen to be separable. A single ebit of prior

entanglement is not sufficient to break the scheme.
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INTRODUCTION

Many secrets in the world are locked away with keys
distributed among many parties. A well-known classical
scheme for this is Shamir’s secret sharing [1], in which a
preassigned fraction of the key-possessing parties needs to
contribute their parts of the key to unlock the secrets. There
are two directions in which this can be generalized to
hiding information in multipartite quantum states. In the
first version called ‘“quantum secret sharing,” the bit is
hidden in a way that some parties can recover the bit via
local operations and classical communication [2,3].
Typically the information is then hidden in pure states
and the theory is closely related to the theory of error
correcting codes, the errors corresponding to the parties
whose part of the key is not available. In the second
version, which has been called “quantum data hiding”
[4,5], and which we follow in this paper, one still hides a
classical bit, but the quantum structure is used to increase
the demands on the communication needed for the recov-
ery. Arbitrary classical communication between N parties
(along with arbitrary local quantum operations) is allowed,
but only with a preassigned amount of quantum informa-
tion exchange can the hidden information be retrieved.

In [4,5] only the case N = 2 was considered. Since the
hiding states have very high symmetry in that case (they
are special “Werner states’ [6]), Terhal ef al. suggest that
multipartite (i.e., N > 2) data hiding scenarios might be
based on highly symmetric multipartite entangled states
such as the ones studied in our paper [7].

Building on this idea we will generalize data hiding to an
extremely versatile scheme: For N-partite systems one can
freely choose for which patterns of quantum communica-
tion the hidden bit can be retrieved and for which patterns it
remains hidden. The level of security can be chosen arbi-
trarily high: The maximal probability of unwanted recov-
eries and probability for erroneous identification using an
allowed pattern of quantum communication go to zero like
the inverse of the dimension of the Hilbert spaces at each
site. Expressed in terms of the number of hiding qubits, this
is exponentially good.
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Surprisingly, no entanglement is needed for this scheme:
The hiding states can be chosen to be separable (this was
strongly suggested, but not proved in [4,5]). In keeping
with this, the scheme cannot be broken with a finite amount
of prior entanglement. For an entanglement based scheme
one would expect that hiding a single bit between two
parties becomes insecure if one ebit of prior entanglement
is available to them. However, we will show that the
amount of entanglement needed to break security is instead
of the order needed to establish quantum communication
by teleportation.

In this Letter we will focus on the main points of the
construction and the main ideas of the proof. For brevity,
we will give details only for the case of N = 4 equivalent
parties. Full proofs of the case of general N and parties
possibly playing different roles, will appear elsewhere [8].

MAIN RESULT

Throughout we will assume that one classical bit has
been encoded in the preparation of a multipartite quantum
system, by preparing either a density operator p, or p; on
the Hilbert space H | ® - - - ® H y. We imagine the N
subsystems to be distributed to widely separated laborato-
ries. The aim of the parties is to find out the value of the
hidden bit. For this they are allowed arbitrary classical
communication and can perform local quantum operations.
In addition, they may have established quantum commu-
nication lines between some of the labs, and their success
will depend crucially on which quantum lines are avail-
able. Since we do not distinguish between good and bad
quantum lines, this pattern of allowed quantum communi-
cation is encoded in a partition P of the N sites into
disjoint subsets: Inside each of the subsets arbitrary quan-
tum communication is allowed, so these sites act like one
party, but no quantum communication is possible between
sites in different subsets of P. For example, the partition
P = ({1, 2}, {3, 4}) means that sites 1 and 2 can exchange
quantum information freely, just like 3 and 4, but between
these groups only classical communication is allowed.
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Whatever procedure the N parties apply will amount to
measuring some ‘‘analyzing operator” A, 0 = A = 1 such
that the probability for guessing the value “1” of the
hidden bit on an initial preparation p is tr[ pA]. The locality
conditions imply that only certain operators A are admis-
sible for P. Of course, the parties will try to make
tr{p;A] = 1 and tr{ pyA] = 0. We say that for a particular
pair of hiding states p,, py a partition P is hiding with
quality &4, if |tr[ (p; — py)A]l = &, for all admissible ana-
lyzing operators A. On the other hand, we say that P is
revealing with quality &,, if for some admissible A we have
lte[(py — po)All = 1 — &,.

Whoever is hiding the information does not know in
advance what communication pattern will be established.
But, as our construction will show, the states p;, po can be
designed such that, for any choice of ¢, &, > 0, every
partition is either hiding or revealing with quality &; or
&,, respectively. The set of hiding partitions can be chosen
arbitrarily subject only to the trivial constraint that for
every partition which is finer than a hiding one, i.e., which
corresponds to a pattern allowing less quantum communi-
cation, must itself be hiding. We note that the Hilbert space
dimensions need to become large if the &; are small. In fact,
in our construction the g; typically behave like 1/d, if d is
the dimension of the one-site Hilbert spaces. The construc-
tion naturally also yields separable states p, p, satisfying
the conditions, although for these still higher dimensions d
are required to achieve the same errors.

In this Letter we will explicitly construct hiding states
P1, Po for all choices of hiding partitions of four parties,
which are democratic in the sense that each site plays the
same role. It is remarkable that two such choices are not
comparable in the sense that neither allows more commu-
nication than the other: We will give states for which any
2 : 2 partition ({1, 2}, {3, 4}) is hiding and any 3 : 1 partition
({1, 2, 3},{4}) is revealing, but also states for which the
opposite is true. Hence the “hiding strength” of pairs of
states cannot be parametrized by a one-dimensional scale.

CONSTRUCTION

Symmetric states.—We begin by restricting ourselves to
a class of highly symmetric states known as multipartite
Werner states [7]. Their main virtue is that they can be
described by a fixed set of parameters while the local
Hilbert space dimensions go to infinity. By definition,
four-partite Werner states live on (C%)®*, and commute
with all unitary operators of the form U®* with U a unitary
operator on the d-dimensional Hilbert space C?. This
is equivalent to the possibility of writing the state as linear
combinations of permutation operators (see [9]). For
any permutation 7 of the four sites we will denote
the corresponding permutation operator by V_:=
Z;{jykllzl |7T(l]kl)><l]kl|

Since the communication patterns we consider are in-
variant under permutations, we can even choose the states
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to be permutation symmetric. We denote by (i, i, ..., i,)
the cyclic permutation iy —> i, = - - - —> i, —> i;. Then we
must have, e.g., trf[ p;V(12)] = ti[p;V(23)], since these per-
mutations differ only by a relabeling of the sites. This
leaves just four expectations characterizing the state,
namely,

ran =t p: Vel
ry =t p; Vil

ry =tlp;Vayl,

ry = tlp; Vi3] M
We will fix this vector p = (ry, ry, 13, 4) of expectations
independently of the dimension d. Thus we automatically
get hiding schemes, which work for all dimensions, though
achieving £, — 0 only in the limit d — o0. Whether or not
a particular vector of expectations corresponds to a family
of density operators can be decided independently of the
dimension by group theoretical criteria, the extremal pos-
sibilities being given by irreducible representations of the
permutation group. For details we refer to [8].

Analyzing operators for fixed P.—Without loss of dis-
criminating power we can then suppose that the analyzing
operators A also have the U®* symmetry: The four parties
only have to perform the same random unitary rotation at
every site (“‘twirling’’) before realizing their procedure.
The resulting A will commute with U®* but will have
exactly the same discriminating power for states insensi-
tive to such unitary rotations. Hence we can write

A=Y a,v, @)

with suitable coefficients a,. Note that this averaging
operation does not work for the permutation symmetry,
because the permutations are nonlocal operations,
which would clearly require the exchange of quantum
information.

It turns out that in the sum (2) we must distinguish two
types of terms depending on how the permutation 77 relates
to the partition . We say that 7 is adapted to P if 7w maps
each of the sets in the partition into itself. Clearly, if only
the coefficients a,, for 77 adapted to P are nonzero, A is a
local operator in this communication situation, hence ad-
missible. Only such local operators will be needed to show
that certain patterns are revealing in our theory.

The key problem (settled in the following subsection) is
the converse, namely, to show that every operator A which
is admissible for the partition P is at least approximately of
this sort. Fortunately, we can use here the same simple
criterion already employed in [4,5], which is based on
partial transposition. The partial transpose operation O
associated with a subset S C {1, 2, 3, 4} of the sites takes a
tensor product operator A; ® - - - ® A, to a similar product,
in which all A; with i € § are replaced by their matrix
transpose in a fixed basis. For example, @y, 3 transposes
only the second and the third tensor factors of the input.
The arguments in [4,5] then tell us that, for any operator A,
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which is admissible for P, we must have that
0=054)=1 3)

for all subsets S compatible with 2, i.e., for all § which can
be written as unions of the disjoint subsets forming the
partition P. Since positivity is preserved under global
transposition, it suffices to verify this for either S or its
complement. For example, for P = ({12, 3H{4}), we must
require (3) for the four subsets S = (empty set), {1}, {2, 3},
and {4}.

Coefficients of admissible operators.—In this subsection
we sketch the proof of the following Lemma: Suppose that
A is an analyzing operator, which is admissible for the
partition P. Then in the sum (2) all coefficients a, with
not adapted to P are bounded by c/d, where c is a constant
depending only on N.

We will abbreviate by O(1/d) any terms bounded by a
constant times 1/d, and leave the estimate of the constants
to [8]. Consider the matrix M given by M., =
d *trf[VEV,]. Then since tr[V,,] = d¢, where c is the num-
ber of cycles in 7 (including those of length 1), we find
M, ,=96,,+0(/d). Thus to leading order in d, the
permutation operators are an orthonormal system with
respect to the normalized trace. Then by standard pertur-
bation theory the matrix M~! is also close to the identity,
and we can approximately determine the coefficients in the
sum (2) from

a, =d *u[ViA]l + O(1/4d). 4)

A crucial step in our estimate is to get the trace norm
(11X, = uf vX*X]) of partially transposed permutation
operators. We claim that

||®S(V7T)||l = d4ils(7): (5)

where [g(7r) denotes the number of points in S, which are
mapped outside S. Rather than proving this in general,
consider as an example the case S ={1,2} and 7 =
(2, 3). Since “1” is fixed and “2” is mapped to ““3” outside
S, we have Ig(w) =1. We can write OV, ) =
®S(Zijnm |l]nm><zn]m|) = Z.ijnm |ll’ll’lm><l]]m| This can
be written as d 1 ® P?® ® 1, where P@3 denotes the
one-dimensional projection onto the maximally entangled
vector on sites 2 and 3. Thus @¢(V ) has only the nonzero
eigenvalue d with multiplicity d?. This gives
[105(V,)Il, = & as claimed. More generally, Ig(7) ap-
pears in this computation as the number of repeated indices
in either ket or bra in the analogous representation of
®S(V7r)'

We now apply the standard estimate t{XY] < ||X]|,
[|Y|], and use that taking a partial transpose of both X and Y
does not change the trace. Hence, if ||@¢(A)|| = 1,
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d~*u[AV, ]| = d*|u[O4(A)O4(V,)]|
= d OV NO5(A)l = d75@. (6)

Returning to the statement of the Lemma: Let 7 not be
adapted to . Then there is some set S of the partition,
which is not mapped into itself by 7. For this set /g(7) =
1. On the other hand, since A is admissible for P the
inequality (3) must hold for this S, hence ||@¢(4)]| = 1.
Hence by combining (4) with (6) we get la,| =
d~*ufAV, ]| + O(1/d) = d~ s + O(1/d) = O(1/d).

Tailoring the states.—The idea of the construction is to
choose p; and pg so that tr[p,V,] = tr[pyV,], for all
permutations 77 which are adapted to any of the targeted
hiding partitions 2. Thus when we insert (2) into tr[(p; —
po)A] for any A admissible for P, the only contributing
coefficients are a, = O(1/d). Hence the whole expect-
ation goes to zero.

On the other hand, we will make sure that tr[(p; —
po)V.] # 0, for at least one permutation adapted to
each of the targeted revealing partitions. From this we
get an admissible analyzing operator with analyzing qual-
ity &, # 0, and independent of d. Analysis may not be
with probability one, but imperfect analysis can always
be upgraded to certainty as described in the following
section.

Verifying the examples.—In the following examples the
hiding states are given in terms of the vector of expect-
ations in (1). The hiding partitions in each example are the
given partition, together with all its permutations and all its
refinements.

Weakest hiding: The only permutation adapted to the
finest partition P = ({1}, {2}, {3}, {4}) is the identity. Hence
any way of fixing the expectations of permutation opera-
tors gives a hiding pair of states. For example, we can take
po (p;) as the normalized projection to the Bose (=
symmetric) subspace [the Fermi ( = antisymmetric) sub-
space] of (C)®*. Thus p,=(1,1,1,1) and p, =
(=1,1,1, —1). Obviously, if just two partners, e.g., 1 and
2, can exchange quantum information they can find out
which alternative, O or 1, was chosen by just looking at the
restriction of the state to their pair of subsystems, and
measuring “symmetry” A = (1 + V},)/2.

Hiding against single pairs: For all pair partitions P =
({1, 2}, {3}, {4}) the states po =3(—1,—1,0,1) and p, =
$(—1,3,0, —1) are hiding. Analysis for “‘single pairs™ and
“triplets” (see below) is imperfect.

Hiding against two pairs: For all partitions like P =
(1,2} {3,4}), the states p,=1(0,1,1,0) and p, =
0,1, — % 0) are hiding. However, a partition
({1,2,3},{4}) canuse A = {[1 + V(123) + V321)], to distin-
guish these with certainty.

Hiding against triplets: Conversely, the states p, =
%(3, 1,0,3) and p, = %(1, —1,0, —1) are hiding for any
partition like P = ({1, 2, 3}, {4}), but can be analyzed (im-
perfectly) by two pairs.
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Strongest hiding: Finally, the states p, = i(O, 0,1,2)
and p; = (0,0,1, —2) are hiding unless quantum com-
munication between all parties is established, in which case
they can be distinguished perfectly.

MULTIPLE COPIES ENHANCE RECOVERY

As these examples show, our construction so far does not
guarantee perfect distinction (g, = 0) for the partitions
meant to be revealing. However, there is a single device
to boost the detection quality, namely, to distribute several,
say, K copies of the N-particle system, all prepared in the
same state. Then for the hiding partitions we still get &; =
O(1/d). On the other hand, for the revealing partitions we
can use detection operators A which are linear combina-
tions of permutations. Then the detection probabilities
tr[ p,A] and tr] pyA] are independent of d, and if they are
at all different, measuring A on all K copies distinguishes
p1 and p, with any desired degree of certainty.

This shows that for getting good discrimination g, — 1
we do not really need orthogonal states. What counts is that
po and p,; are different along appropriate directions. Thus
they can even be chosen to be close to the maximally
mixed state and, in particular, separable. Since this was
conjectured in [4,5] we include an explicit example,
namely, the bipartite (N = 2) case of our construction.
At the same time this illustrates nicely the interplay be-
tween the parameters d and K.

We use a simplified (but slightly weaker) bound to
establish hiding: Since all admissible analyzing operators
satisfy 0= Op(A) =1, we get |[tuf(p; — poAll =
[t[Opy(p1 — po)Opy(A)]l = [1Op3(p1 — po)ll;.

Our single copy scheme is based on bipartite Werner
states. With P the antisymmetric/symmetric projectors on
C?® C? and p- = P~ /u[P.] our hiding states are

R p+ t p_\oK R
po=(%) . b =p%K (7)
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which are clearly separable [6]. From this one can readily
compute the partial transposes @ (p,;)®X and their trace
norm difference, as well as the expectations of the analyz-
ing operator A = P%K | to get

g,=1—0—-1/d)X, and &, =2"¥X, (8)
Thus we can first choose K large to make &, small and,
subsequently d large, to get &, = K/d + O(d~?) small.

This separable scheme is remarkably robust even if the
analyzing partners share some entanglement: If they share
a maximally entangled pair of a D-dimensional system
with fixed D, we get the same asymptotic behavior in the
limit d — o0, just with worse constants. Only if we choose
D to grow on the same scale as d, i.e., on the same scale
which would make teleportation possible, do we find that
hiding becomes impossible.
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