
VOLUME 89, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 AUGUST 2002
Implementation of Universal Quantum Gates Based on Nonadiabatic Geometric Phases
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We propose an experimentally feasible scheme to achieve quantum computation based on nonadiabatic
geometric phase shifts, in which a cyclic geometric phase is used to realize a set of universal quantum
gates. Physical implementation of this set of gates is designed for Josephson junctions and for NMR
systems. Interestingly, we find that the nonadiabatic phase shift may be independent of the operation time
under appropriate controllable conditions. A remarkable feature of the present nonadiabatic geometric
gates is that there is no intrinsic limitation on the operation time.
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In this Letter, we propose a general scheme to achieve
the universal set of quantum gates based on cyclic non-

tum gates based on nonadiabatic geometric AA phases.
The single-qubit Hamiltonian ĤH is chosen to go through a
Quantum computers could efficiently solve certain sig-
nificant problems which are intractable for classical com-
puters [1]. The physical implementation of quantum
computation (QC) requires a series of accurately control-
lable quantum gates. These gates may be implemented
experimentally by using controlled dynamic or geometric
operations. It is remarkable that geometric operations
based on adiabatic passages depend only on the global
feature of the path executed [2], and therefore provide a
possible fault-tolerant way to perform quantum gate
operations [3–6]. Recently, several schemes for adiabatic
geometric QC were proposed by using nuclear magnetic
resonance (NMR) [4], trapped ions [5], or superconducting
nanocircuits [6]. In particular, an experimental realization
of the conditional adiabatic phase shift was reported [4]
with the NMR technique. However, the distortions from
the adiabatic approximation were also seen in the NMR
experiment. Moreover, the adiabatic condition requires
that the evolution time must be much longer than the
characteristic time �0 of a qubit system, while the evolution
must be completed within the decoherence time. This
constraint leads to an intrinsic limitation on the operation
time of quantum gates and seems to be a serious obstacle to
the physical implementation of some geometric QC
schemes, especially for those with solid state systems
[6–8], where the decoherence time is very short. Even for
the single-qubit gate operations based on the adiabatic
Berry phase, they might be hard to implement with the
current experimental technique [9]. Therefore, it is impor-
tant to overcome the operation time limitation in the geo-
metric QC set by the adiabatic condition. A two-qubit
nonadiabatic geometric phase shift gate was proposed
[10] recently for NMR systems. However, it is still an
interesting open problem to design a general scheme to
achieve the universal set of nonadiabatic geometric gates
which can be implemented in various physical systems.
0031-9007=02=89(9)=097902(4)$20.00 
adiabatic geometric operations. The present scheme is
experimentally feasible, with the required experimental
techniques not more stringent than those for dynamical
gate operations. Similar to the case with adiabatic pas-
sages, the geometric gates based on nonadiabatic cyclic
operations also depend only on some global features [11],
which make them robust to certain computational errors.
Comparing with a nonadiabatic two-qubit gate proposed in
Ref. [10], our scheme has at least two distinct advantages:
(i) both a two-qubit gate and two noncommutable single-
qubit gates in a realistic system are designed based on a
nonadiabatic geometric method; the latter being also
highly nontrivial and useful in QC [5]; (ii) the time-
independent nonadiabatic phase shift may be realized.
It is also remarkable that the set of gates designed are
not only all-geometric but also all-nonadiabatic, and the
scheme is applicable for several potential physical systems.

For universal QC, we need to achieve only two kinds of
noncommutable single-qubit gates and one nontrivial two-
qubit gate [12]. Before the design of geometric quantum
gates, we show first how to calculate the adiabatic and
nonadiabatic geometric phases. For a spin-1=2 particle
subject to an arbitrary magnetic field B, the nonadiabatic
cyclic Aharonov-Anandan (AA) phase [11] is just the solid
angle determined by the evolution curve in the projective
Hilbert space—a unit sphere S2. Any two-component
‘‘spin’’ state j i � �e�i’=2 cos��=2�; ei’=2 sin��=2��T may
be mapped into a unit vector n � �sin� cos’;
sin� sin’; cos�� in the projective Hilbert space via the
relation n � h j ~��j i, where T represents the transposition
of matrix. By changing the magnetic field, the AA phase is
given by 
 � � 1

2

R
C�1� cos��d’, where C is along the

actual evolution curve on S2 and is determined by the
equation @tn�t� � ��B�t� 
 n�t�=	h. This 
 phase recov-
ers Berry phase in adiabatic evolution [13].

We then show how to achieve the universal set of quan-
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cyclic evolution with period � in the parameter space fBg.
We consider the process where a pair of orthogonal states
j 
i can evolve cyclically. It is necessary to first decide the
above cyclic evolution states. A phase difference between
j �i and j �i can be introduced by cyclically changing ĤH.
The phases acquired in this way would contain both a
geometric and a dynamical component. The dynamical
phase accumulated in the whole process can be removed
by a simple method to be described later [4,6], and thus
only the geometric phase needs to be considered at present.
By taking into account the cyclic condition for j 
i and
removing the dynamical phase, we have the relation
U���j 
i � exp�
i
�j 
i, where U��� is the evolution
operator. Here we have also used the result that

��n�0�� � �
�n�0�� at any time if the two initial states
correspond to 
n�0� [13]. We now write an arbitrary initial
state as j ii � a�j �i � a�j �i with a
 � h 
 j  i and
express the two cyclic initial states as j �i � cos�2 j0i �
sin�2 j1i and j �i � � sin�2 j0i � cos�2 j1i, where j0i and
j1i constitute the computational basis for the qubit. The
final state at time � is found to be j fi � U��; 
�j ii,
where

U �
ei
 cos2�2 � e�i
 sin2�2 i sin� sin


i sin� sin
 ei
 sin2�2 � e�i
 cos2�2

� �
:

(1)

It is straightforward to verify that two operations
U1��1; 
1� and U2��2; 
2� are noncommutable unless
sin
1 sin
2 sin��2 � �1� � 0. Since two kinds of noncom-
mutable operations constitute a universal set of single-bit
gates, we achieve the universal single-bit gates by choosing
�1 � �2 �mod2�� for any nontrivial phases 
1 and 
2. For
example, the phase-flip gateU1 � exp��2i
1j1ih1j� (up to
an irrelevant overall phase) is achieved at � � 0; the gate
U2 � exp�i
2�x� is obtained at � � �=2, which produces
a spin flip (NOT-operation) when 
2 � �=2 and an equal-
weight superposition of spin states when 
2 � �=4.

In terms of the computational basis fj00i; j01i; j10i;
j11ig, the unitary operator to describe the two-qubit gate
is given by Utq � diag�U�
0;�0�; U�
1;�1�� under the condi-
tion that the control qubit is far away from the resonance
condition for the operation of the target qubit. Here 
� (��)
represents the geometric phase (the cyclic initial state) of
the target qubit as long as the state of the control qubit
corresponds � � 0; 1 (� denotes the state of the control
qubit). Following Ref. [12], we find that the unitary opera-
torUtq is a nontrivial two-qubit gate if and only if 
1 � 
0

or �1 � �0 (mod2�). Therefore, all elements of QC
may be achievable by using nonadiabatic cyclic geometric
operations.

We now describe briefly how to remove the dynamical
phase [4,6]. We let j 
i evolve along the time-reversal
path of the first-period loop during the second period,
namely, the same loop as before is covered backwards by
HB � ��B � ~��=2. This process may be simply realized
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by reversing the effective magnetic field with
B�2�� t� � �B�t� on the same loop of the first-period
�0; ��. We thus have HB�2�� t� � �HB�t� on the loop.
As a result, the geometric AA phases accumulated in the
two periods will add and the dynamical phase will be
canceled. This is because the dynamical phase 
�2�

d for
the second period has the same magnitude as that (
�1�

d )
for the first-period but with the opposite sign, i.e.,

�2�
d �

R
2�
� dth jHB�t�j i �

R
�
0 dth jHB�2�� t�j i �

�
R
�
0 dth jHB�t�j i � �
�1�

d , where the fact that j��t�i �
j �2�� t�i and j �t�i represent the same quantum state
is used.

So far, we have proposed a general scheme to achieve
nonadiabatic geometric QC. It is important to further con-
sider implementing this scheme with real physical systems.
Here we illustrate this implementation by two examples.
The first one is an NMR system [4,14], where the
Hamiltonian for a single-qubit is given by

H � �
1

2
�!0�x cos!t�!0�y sin!t�!1�z�; (2)

with !i � �Bi=h. Equation (2) can be solved analytically
[13]. In terms of explicit form of the solution n��;!t�
represented in Ref. [13], it is found that the initial states
j 
i with � � arctan�!0=�!1 �!�� takes a cyclic evolu-
tion with the period � � 2�=! [10], and the evolution path
is the curve on a unit sphere swept by the unit vector

n��;!t�. The corresponding geometric phase is given
by 

 � 
��1� cos�� for one cycle. Based on the non-
commutable criterion mentioned before, we may use any
two processes with different !0=�!1 �!� to achieve two
noncommutable qubit gates. The advantage of the above
nonadiabatic gates is that there is, in principle, no limita-
tion on the magnitude of !. It needs to be noted that the
gates U1;2 may not be practical by using the field B in
Eq. (2) since 
 � 0 ��� as � � 0 (�=2). This problem can
be solved by rotating the field. It is seen that the parameter
� for the initial cyclic state may be changed by rotating the
symmetric axis for the field (2). In the rotated coordinates,
B0 � R�ŷy; �0 � ��B [where R�ŷy; �� represents the rota-
tion of angle � around the ŷy axis] and n0 �� R�ŷy; �0 �
��n��;!t�� because of the spherical symmetry of the
system. Thus � may change to any required �0 for imple-
mentation of the quantum gate, with the geometric phase
being unchanged since the area swept by n0 is the same as
that by n. For example, if the magnetic field is B0 for �0 �
�=2, we may achieve the gateU2 � exp�i
2�x�with 
2 �
2��1� cos�� (where the factor of 2 arises from the evo-
lution of two cycles, which is adopted to remove the
dynamic phase). A similar method may be employed to
achieve the two-qubit operation. The spin-spin interaction
in NMR is very well approximated by HI � J�1

z�
2
z=2. We

may use the initial state j 
i with �� � arctanf!0=�!1 �
�2�� 1�J�!�g to achieve a nonadiabatic cyclic two-
qubit gate Utq. The state of control qubit is (almost) not
affected by any operation of the target qubit if !t

1 of the
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target qubit is chosen to be significantly different from !c
1

of the control qubit (i.e., j!t
1 �!c

1j � J).
As a typical case, we now show how to achieve the

conditional geometric phases for the two-qubit gate
Utq

�2�;3�=2�. 

� as a function of �=�0 (with �0 � 2�=!0)

is plotted in Figs. 1(a) and 1(b), where !0 is set to be
2

������
15

p
J. First, we assume that !1 � &J with 0<&< 1;

the phase shifts for Utq
�2�;3�=2� are calculated for � �

2
������
15

p
=��1� &�J�. The curve 
� � � is plotted in

Fig. 1(b) for & � 0:8 [the operation time � �
5

������
15

p
=�2J�]. Second, we choose !1 � J�! if !1 is

changeable, then the phase 
� would be independent on
the operation time. The time-independent conditional
phase shifts are clearly seen in Fig. 1(b); namely, the state
always evolves along the same closed curve in the pro-
jected Hilbert space for the chosen parameters. This also
indicates the geometric feature of nonadiabatic AA phase.
Normally, the state in the projected Hilbert space is con-
trolled by varying the effective field.

The second example is provided by the charge qubit
using Josephson junctions, which have been studied in
Ref. [6] with adiabatic passages. The generalization to
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FIG. 1. Conditional geometric phases in an NMR system for
(a) !1 � 0:8J and (b) !1 � J�! with !0 � 2

������
15

p
J. The solid

lines represent actual phases for cyclic evolutions, while the
dotted lines are calculated under the adiabatic approximation.
Open circles and squares denote 
0 and 
1, respectively.
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nonadiabatic quantum computation is important for this
kind of solid state qubits since the decoherence time in
these systems is typically short. The single qubit [Fig. 2(a)]
consists of a superconducting electron box formed by an
asymmetric SQUID with the Josephson coupling E1 and
E2, pierced by a magnetic flux �, and subject to an applied
gate voltage Vx � 2enex=Cx with 2enex as the offset charge
and Cx as the capacitance of the electron box. In the
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0

10

-5 0 5

4

8

12

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200
0.20

0.22

0.24

0.26

z

y
x

B

(b)

(c)

 

 

P
h

a
s

e
s

 (
1

/ π
)

τ /τ 0

 

 

FIG. 2. (a) A schematic Josephson charge qubit (Ref. [6]).
(b) The fictitious magnetic field (in unit of �ev) in the designed
cyclic process for nonadiabatic geometric gates. (c) Geometric
phases to achieve a NOT gate for E2 � 4E1 � 6:25�ev, Ech �
5:0�E1 � E2�, and �0 � arccos�3=4�. The inset shows the phase
shift for the Hadamard operation as �0 � arccos�7=8�. The
solid lines represent the actual phases (
) for cyclic evolutions,
while the dotted lines (
a) are calculated under the adiabatic
approximation.
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charging regime (where E1;2 � Ech with Ech as charging
energy) and at low temperatures, the system behaves as an
artificial spin-1=2 particle in a fictitious magnetic field [15]

B � fEJ cos&;�EJ sin&;Ech�1� 2nex�g; (3)

where EJ �
��������������������������������������������������������
E2
� � 4E1E2 cos

2���=�0�
p

, tan& �
E� tan���=�0�=E� with E
 � E1 
 E2 and �0 �
h=2e. By changing Vx and �, Eq. (3) draws a curve in
the parameter space fBg. We here study a specific process
described by���t� � �0 arctan�E� tan�!t�=E��, nex�t� �
�1� �EJctg�0 � 	h!�=Ech�=2. The fictitious field is a ro-
tating field with a constant frequency [Fig. 2(b)], which
guarantees that the angle �0 � arctanfEJ=�Bz�t� � 	h!�g is
time independent. We can find that the state denoted by the
vector n��0;�!t� undergoes a cyclic evolution with the
period � � 2�=! [10]. Therefore, we can obtain a unitary
operator (1) in the charge-qubit system, where � � �0 and
the AA phase 
 is the half solid angle swept by the vector
n��0;�!t�.

The interaction between different charge qubits may be
realized by coupling two asymmetric SQUIDS capaci-
tively. If the coupling capacitance CI is smaller than the
others, the field on the target qubit is given by Eq. (3), but
the z component is replaced by B�z � Ech�1� 2nex� �
EI�nex;c � ��, where nex;c represents the offset charge in
the control qubit and EI is the coupling energy [6].
Obviously, the 
� phase of the target qubit in the de-
coupled case is different from 
 even though ��; nex� varies
in the same way. If the offset charge nex;c is time indepen-
dent in the process , the state n���;�!t� with �� �

arctan�EJ=�B
�
z � 	h!�� still undergoes a cyclic evolution.

Thus, the two-qubit operator Utq may be obtained similar
to the case in NMR. The elimination of the adiabatic
condition for two-bit geometric gates is significant since
the coherence time for two-qubit gates is typically much
shorter than that for single-qubit gates.

To see clearly the advantages of nonadiabatic geometric
qubit gates, we compare the operation time between non-
adiabatic gates and adiabatic gates, with the phase shift
�=2 ��=4� corresponding to a NOT (Hadamard) operation.
The geometric phases for single-bit operations are shown
in Fig. 2(c) with certain parameters. It is seen from the
main panel of Fig. 2(c) that only if � is longer than 70�0
( � 	h=EJ), the adiabatic phase 
a deviates from the actual
nonadiabatic phase 
 within 10% error. Similar results can
be obtained for other parameters [e.g., see the inset of
Fig. 2(c) for 
 � �=4]. Note that the coherence time
achieved by current technology is 30–40�0 [8] and thus
the theoretical proposal based on the adiabatic phase is not
accurate enough to achieve this kind of quantum gate
experimentally. In addition, Fig. 2(c) also clearly shows
that nonadiabatic phases can be independent of the opera-
097902-4
tion time, similar to the case in NMR systems addressed
before.

Finally, we emphasize that the advantages of our scheme
are (i) the designed quantum gates are universal and can
handle arbitrary QC without the intrinsic limitation on
operation time; (ii) the scheme is essentially all-geometric
and is robust to certain computational errors; (iii) the
physical implementation of the scheme can now be real-
ized by realistic Josephson junctions and NMR systems.
Nevertheless, it seems to be a limitation of the method that
the nonadiabatic phase is more sensitive to fluctuation in
the trajectory area than that of the adiabatic phase.
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