
VOLUME 89, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 AUGUST 2002
Excitonic Optical Spectrum of Semiconductors Obtained by Time-Dependent Density-Functional
Theory with the Exact-Exchange Kernel
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Applying a novel exact-exchange (EXX) approach within time-dependent density-functional theory, we
obtained the optical absorption spectrum of bulk silicon in good agreement with experiments including
excitonic features. Analysis of the EXX kernel shows that inclusion of the Coulomb coupling of electron-
hole pairs and the correct long-wavelength behavior in the kernel is crucial for the proper description of
excitonic effects in semiconductors.
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finite systems and accordingly their highest occupied orbi- GWA-BSE.
The calculation of optical spectra of solids has been
traditionally one of the most important and challenging
areas of first-principles material investigations. The inter-
action of excited electrons and holes plays a crucial role in
optical excitations; however, properly incorporating such
effects ab initio is theoretically and computationally very
difficult. In the past several years there has been a major
advance in the field [1] based on the solution of the Bethe-
Salpeter equation (BSE) [2] for the two-particle Green’s
function starting from quasiparticles obtained within the
GW approximation (GWA) [3], but unfortunately the cal-
culation scheme is by nature complicated and demanding.

One attractive alternative is extending density-func-
tional theory (DFT) to the time-dependent (TD) case [4].
TDDFT is a well-founded theory for the treatment of
electronic excitations in general and, unlike the GWA-
BSE route which is presently implemented as a post-DFT
method, provides a computational scheme based directly
on Kohn-Sham (KS) one-particle states. Moreover, once
the KS one-particle information is given, the electronic
linear response properties are completely determined by
the orbital-independent Hartree kernel FH�r; r0� � 1=jr�
r0j [5] and the dynamic exchange-correlation kernel
Fxc�r; r0; t� t0� � �vxc�r; t�=�n�r0; t0�. Thus, in principle,
one only needs to find a good approximation to the ex-
change-correlation kernel for TDDFT applications, which
represents a significant conceptual and computational sim-
plification. In practice, however, the conventional adiabatic
local-density approximation (LDA) and generalized-gra-
dient approximation (GGA) kernels are known to be in-
adequate for the study of optical excitations in solids. A
primary evidence is their incorrect long-wavelength be-
havior for insulators [6–8].

Deficiencies of the LDA and GGA in fact appear already
on the level of the ground-state exchange-correlation en-
ergy Exc and potential vxc�r� � �Exc=�n�r�. With respect
to Exc, e.g., the LDA and GGA inherently fail to describe
the quasi-two-dimensional electron gas [9]. For vxc and the
corresponding KS eigenvalue spectrum, LDA and GGA
v incorrectly decay exponentially rather than as �1=r in
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tal energies are too high and unoccupied orbitals do not
exhibit Rydberg series, and for solids their band gaps are
too small. The deficiencies of the LDA and GGA vxc, in
particular, pose significant practical difficulties for the
study of electronic excitations within DFT.

In this regard, recent realizations of multidimensional
KS exact exchange (EXX) [10–12] and effective EXX [13–
16] methods provide an interesting opportunity. The
orbital-based self-interaction-free EXX methods not only
provide realistic local multiplicative KS exchange poten-
tials and KS eigenvalue spectra for molecules [11,12,14–
16] but also give band gaps of semiconductors in good
agreement with experiments [10,13]. We have also recently
shown [17] that the EXX spectrum at the one-particle level
without any previously applied post-DFT modification
such as a quasiparticle shift [18] gives a very good descrip-
tion of the absorption spectrum of semiconductors exclud-
ing excitonic features resulting from two-particle
interactions, which supports the notion that KS eigenvalue
differences represent well-defined approximations for
excitation energies [19,20]. However, the remaining
excitonic character in the spectrum is not properly treated
by the LDA or GGA kernel, so a complete set of DFT
methods for electronic optical excitations in solids is still
missing.

Given the importance of proper inclusion of excitonic
effects in the study of electronic excitations and the en-
couraging performance of the EXX method for band struc-
tures of semiconductors, we consider in this work a
TDDFT scheme based on the EXX kernel. At the formal
level, in contrast to LDA and GGA kernels, the EXX kernel
is nonlocal in real space, depends explicitly on the fre-
quency, and has the correct long-wavelength limit behavior
[7,21]. Taking bulk silicon as representative semiconductor
system, we show that the EXX kernel indeed provides
optical spectra of semiconductors in good agreement
with experiments including excitonic effects. We further
analyze the origin of the excitonic peak and the validity
of locality approximations in space and time. We addition-
ally make comparisons between EXX-TDEXX and
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To obtain the optical spectrum of a solid, we computed
the frequency !-dependent macroscopic dielectric func-
tion �M�!� which can be written in terms of the modified
full linear response matrix �̂� as [2]

�M�!� � 1� lim
q!0

FH�q��̂��q;!�jG�G0�0; (1)

where q is the photon momentum, and FH�q� �
FH�G;G0;q� � �G;G04�=jq	Gj2. Within TDDFT, �̂� is
completely determined by the KS linear response matrix
�0 and the kernel matrix Fxc according to

�̂��q;!� � 
1� �0�q;!�fF̂FH 	 Fxc�q;!�g
�1�0�q;!�;
(2)

where F̂FH � 0 for G � G0 � 0 and F̂FH � FH otherwise.
At the independent-particle level, �̂� � �0, the two-particle
interaction effects due to F̂FH and Fxc are both ignored,
while only the Fxc part is ignored at the TD Hartree level.
As is apparent from Eqs. (1) and (2), the long-wavelength
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q! 0 behavior of the ‘‘head’’ (G � G0 � 0) and ‘‘wing’’
(G � 0 and G0 � 0 or vice versa) elements of Fxc [in
insulators, O�1=q2� for the head and O�1=q� for the wings
[7,21] ] plays an important role.

The computation of �0 is straightforwardly done with
KS one-particle states and energies, and consequently Fxc

remains as the only important quantity to be determined.
So far, for Fxc, the adiabatic LDA kernel FLDA

xc �
�2ELDA

xc =��n�n0� has been almost exclusively employed.
It is local in real space and frequency independent, which
results in a reciprocal-space representation independent of
q and !, FLDA

xc �G;G0;q;!� � FLDA
xc �G�G0�. While nu-

merically advantageous, this drastic simplification is
known to be problematic for the study of optical responses
in solids. For example, the head and wings of the LDA
kernel are incorrectly nondivergent in the q! 0 limit, and
this defect cannot be corrected by a semilocal GGA kernel.

Instead, we adopted in this work the EXX kernel,
FEXX
x �G;G0;q;!� �

X
G1;G2

��1
0 �G;G1;q;!�Hx�G1;G2;q;!���1

0 �G2;G0;q;!�; (3)

which is nonlocal in real space and explicitly depends on the frequency. The expression of the EXX kernel ‘‘core’’ Hx,
which was interpreted in the many-body diagrammatic picture as the first-order self-energy and vertex corrections to the
irreducible polarizability ~�� � �0 	 �0 Fxc ~�� [22], has been presented in Ref. [21] for the case of periodic insulators. We
have further shown that FEXX

x has the q! 0 behavior of the exact Fxc and thus rectifies one serious deficiency of the LDA
and GGA kernels. The full expression for Hx is rather lengthy and we list here only the three resonant terms [23]:

HA�res
x �q;!� � �

2

�

X
ask

X
btk0

�
hakje�i�q	G��rjsk	 qihsk	 q; bk0jŵwCjtk0 	 q; akihtk0 	 qjei�q	G0��rjbk0i

��ak � �sk	q 	!	 i����bk0 � �tk0	q 	!	 i��

�
;

HB�res
x �q;!� � �
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X
absk

�
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�

X
astk

�
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�
; (4)

where two is the spin factor, � is the crystal volume, fa; bg are valence bands, fs; tg are conduction bands, the matrix
elements hi; jjŵwCjl;mi are four-index integrals defined as

hik	 q; jk0jŵwCjlk0 	 q;mki �
Z
dr

Z
dr0��

ik	q�r��
�
jk0 �r0�wC�r; r0��lk0	q�r��mk�r0�; (5)

�̂�x denotes the Hartree-Fock form exchange operator constructed from the KS orbitals,

hik	 qj�̂�xjjk	 qi � �
X
ak0

hik	 q; ak0jŵwCjak0; jk	 qi; (6)
and v̂vx is generated by the orbital-independent EXX KS
potential vx�r�. Here wC�r; r0� yielding ŵwC denotes the
generalized Coulomb interaction, e.g., 1=jr� r0j for the
bare Coulomb interaction.

Compared with the standard BSE approach, although we
also have to perform the four-index Coulomb integrals of
Eqs. (5) and (6), we can calculate optical spectra without
diagonalizations in the space of occupied and unoccupied
single-particle states. Because of the huge number of k
points involved in the optical spectrum calculations, the
size of the matrix to be diagonalized can be very large, and
the fact that we can avoid the diagonalization process
altogether in principle represents a significant numerical
advantage. In addition, note that FEXX

x is free of Coulomb
singularities [21] and thus the formal validity of the EXX
TDDFT approach does not depend on the consideration of
the thermodynamic limit. In the BSE equation, on the other
hand, integrable singularities appear which require special
numerical care [1].
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We have implemented the full dynamic EXX kernel
employing the plane wave basis. The accuracy of the
code has been carefully checked by numerically testing if
the calculated exchange kernel acts as a functional deriva-
tive of the exchange potential with respect to the electron
density at ! � 0, �vEXXx � FEXX

x �n. To obtain FEXX
x we

first carried out self-consistent EXX ground-state calcula-
tions at the experimental lattice constant of Si, 5:43 �A, and
generated the KS potential [10,17]. Ten special-k points
and an orbital kinetic energy cutoff of 12.5 Ha have been
used. In the response calculation step, we solved the KS
equations once more at a larger number of k points and
obtained KS orbitals and eigenvalues as the input for the
construction of �0 and FEXX

x . We adopted a shifted uniform
k mesh, for which we employed up to 22� 22� 22 k
points for �0 and up to 9� 9� 9 k points for FEXX

x . The
kinetic energy cutoff of 10 Ha and � � 0:15 eV have been
used, and up to ten conduction bands were included.

The first question we addressed with small k-points sets
(e.g., 5� 5� 5) was whether the adiabatic approximation,
defined as the ! � 0 limit of Eqs. (3) and (4), is justified.
We found that the adiabatic EXX kernel generates an
overall similar spectrum as the dynamic one. Computing
FEXX
x only at a single ! results in a significant reduction of

computational workload, and thus the converged calcula-
tion was performed in the adiabatic approximation.

Figure 1 shows the absorption spectrum of Si obtained at
the single-particle EXX level and by taking into account
two-particle interaction effects via F̂FH 	 FLDA

xc (EXX	
TDLDA) and via F̂FH 	 FEXX

x (EXX	 TDEXX).
Compared with the much discussed LDA (and LDA	
TDLDA) spectrum, which is incorrectly shifted to the
lower frequency region by about 1 eV due to its well-
known band gap underestimation, the single-particle
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FIG. 1 (color online). Calculated optical absorption spectrum
of Si from EXX (dashed line), EXX	 TDLDA (dot-dashed
line), and EXX	 TDEXX (solid line). Circles denotes experi-
mental data of Ref. [24].
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EXX absorption edge and second (E2) peak are in good
agreement with the experimental curve [24] due to the
realistic EXX band structure [17]. However, the first (E1)
peak originating from electron-hole attractions is much
underestimated at the single-particle EXX level, and it is
not recovered by taking into account electron-hole inter-
actions via TDLDA, demonstrating the failure of FLDA

xc to
describe excitonic effects. The EXX	 TDEXX spectrum,
on the other hand, is in excellent agreement with the
measured data: The absorption strength at the E1 peak
region is correctly enhanced while that of the higher fre-
quency region is reduced, which shows that FEXX

x indeed
provides the correct description of the important excitonic
effects.

To obtain the EXX	 TDEXX spectrum in Fig. 1, we
used a slightly modified bare Coulomb interaction as wC.
Employing the bare Coulomb interaction resulted in a
collapse of the spectrum due to too strong long-range
Coulomb interaction of electron-hole pairs at different k
points. We therefore cut off the long-range Coulomb inter-
action for these pairs, i.e., set to zero the contributions to
the integrals of Eq. (5) for which �G	 k� k0� lies within
the first Brillouin zone [25]. Devising a more systematic
strategy might be desirable in the future.

Now, to understand the underlying mechanism of the
encouraging EXX	 TDEXX result, we analyze FEXX

x by
investigating the role of different contributions to Hx as
shown in Fig. 2. First, by taking only HBx , we obtain a
spectrum resembling that of the one-particle EXX but
shifted upward by about 0.3 eV. No excitonic feature arises
at this level. This spectrum is similar to that of the GWA,
which is in agreement with previous predictions [22,26]
that GWA results should be recovered with the HBx part of
the screened EXX kernel. However, note that we have used
an only slightly modified bare Coulomb interaction, and,
while the GWA spectrum results from independent quasi-
particles that involve (N � 1)-electron excitations, the
DFT ‘‘quasiparticles’’ spectrum already represents elec-
tron-number conserving (N-electron) one-particle excita-
tions at the time-independent level [17,19,20]. Second, if
we take only HAx , compared with the EXX, the spectrum is
strongly enhanced at the lower frequency region ( & 4 eV)
while it is much reduced at the higher frequency region ( *

4 eV). The excitonic E1 peak appears predominantly while
the E2 peak is slightly redshifted by about 0.2 eV. This
shows that the Coulomb coupling of electron-hole pairs is
precisely the origin of the excitonic E1 peak. Finally, we
set the head and wings of FEXX

x to zero and thus make them
q independent as in the case of the LDA or GGA. By doing
so, we obtain a spectrum similar to that of the EXX	
TDLDA without excitonic peaks or whatsoever. This dem-
onstrates that taking into account the correct q! 0 behav-
ior of Fxc is crucial.

We finally comment on other recent TDDFT works that
have also obtained optical spectra of semiconductors in
good agreement with experiments. First, de Boeij et
al. have left the domain of conventional DFT and applied
096402-3
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FIG. 2 (color online). Calculated optical absorption spectrum
of Si from EXX	 TDEXX with full EXX kernel (solid line),
HBx only (dashed line), HAx only (dot-dashed line), and full EXX
kernel with head and wings set to zero (long-dashed line).
Circles: experimental data [24].
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TD current DFT [27]. Albeit they had to introduce an
empirical energy shift and a prefactor for the polarization
functional, their approach may represent a different route
to include the space nonlocality discussed above via a
macroscopic functional. However, our result shows that
employing the current response derived from a macro-
scopic functional is not necessary if one properly incorpo-
rates the space nonlocality in the microscopic density
response. In this context, recent work of Reining et
al. which was based on the idea of mapping the BSE to
the TDDFT is in agreement with ours [8]. But in their
scheme they (i) invoked the GWA quasiparticle shift and
(ii) employed an empirical static scaled Coulomb kernel as
Fxc. Although their approach is not rigorous, we note that
their simple static kernel nevertheless exhibits a correct
q! 0 divergence.

In summary, we have reported calculations of the optical
absorption spectrum of Si with the novel TDEXX ap-
proach. Of particular interest was the nature of the dynamic
and nonlocal orbital-based EXX kernel which exhibits the
q! 0 behavior of the exact Fxc and successfully generated
excitonic features in the spectrum. We showed that includ-
ing Coulomb coupling of KS electron-hole pairs at differ-
ent k points and the correct long-wavelength behavior of
the exchange-correlation kernel is crucial, while the adia-
batic approximation can be justified.
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