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Shearing a Glassy Material: Numerical Tests of Nonequilibrium Mode-Coupling Approaches
and Experimental Proposals
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The predictions of a nonequilibrium schematic mode-coupling theory developed to describe the
nonlinear rheology of soft glassy materials have been numerically tested in a sheared binary Lennard-
Jones mixture. In this Letter, we focus on the existence, behavior, and properties of an effective
temperature Teff for the slow modes of the fluid, as defined from a generalized fluctuation-dissipation
theorem. New, simple experimental protocols to access Teff are proposed, and one such experiment is
numerically performed. Our results give strong support to the thermodynamic interpretation of Teff and
make it experimentally accessible in a very direct way.
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our knowledge, the mode-coupling theory of supercooled
fluid has not yet been extended to fluid under shear beyond

more detail in a longer publication [21]. Last, we analyze
the main new feature for the field of rheology which
Glassy materials are usually defined by the fact that their
relaxation time is larger than the experimental time scale.
In simple molecular systems, the associated glass transi-
tion temperature corresponds to very high viscosities, mak-
ing it difficult to investigate experimentally their
rheological properties. In complex fluids (e.g., colloids,
emulsions) it is, however, possible to reach a glassy situ-
ation, in the sense of large relaxation times, with systems
having viscosities or shear moduli that allow for rheologi-
cal investigations [1]. Such materials have been described
as ‘‘soft glassy materials’’ [2].

In its glassy state, a material is by definition out of
equilibrium. Physical properties are then a function of
the time tw spent in the glassy phase, a behavior called
aging [3]. Interestingly, recent experiments on various
complex fluids have demonstrated striking similarities
with other, more standard, glassy systems [4–8]. Upon
imposing a steady, homogeneous shear flow, a different
kind of nonequilibrium situation is obtained. The flow,
characterized by the shear rate �, creates a nonequilibrium
steady state, in which time translation invariance is recov-
ered [9]. This situation can therefore be used to probe the
glassy state, with the convenient feature of having the shear
rate � rather than the waiting time tw as a control parame-
ter. Moreover, this way of probing the nonequilibrium
properties of glassy systems is probably more relevant
experimentally than the aging approach, at least in the
case of soft glassy materials.

Recently, a general scenario was proposed for glassy
systems subject to an external forcing [10], based on the
study of mean-field models. The rationale of this approach
is that the equilibrium dynamics of these models is equiva-
lent to the ‘‘schematic’’ mode-coupling approach of slow-
ing down in supercooled liquids [11,12]. The study of their
nonequilibrium dynamics can thus be seen as a nonequili-
brium schematic mode-coupling approach [3,13,14]. To
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the linear response regime. However, in analogy to what
was done for aging or supercooled systems, it is sensible to
bypass this aspect and to carry out a direct comparison
between mean-field predictions and experimental or nu-
merical results.

The aim of this work is thus to check on a realistic model
of a fluid the predictions that emerged from the theoretical
approach of Ref. [10]. Several earlier studies have been
devoted to simulating glassy sheared fluids. Reference [15]
focused on the dynamics at the molecular level. Our study
is devoted to more global aspects, with the aim of provid-
ing experimentally testable predictions. Reference [16]
also proposed to use the shear rate as a control parameter
for jamming systems. Some dynamic aspects of a model
similar to ours, with the difference of being athermal (zero
temperature), have been investigated, as discussed in a
companion paper [17].

We have investigated the stress/temperature jamming
phase diagram (Fig. 1) of the ‘‘standard model’’ for super-
cooled liquids, namely, a 3D 80:20 binary Lennard-Jones
mixture, in a simple shear flow defined by v � �yex. The
system consists of N � 2916 particles in a cubic simula-
tion box. It has been characterized in much detail at the
reduced density � � 1:2, where we carry out our simula-
tions, both in supercooled [18] and aging [19] regimes. Our
simulations follow the protocol detailed in Ref. [20]: The
system is first made stationary on a time scale of a few ��1.
Then we perform our measurements in a range T 2
�0:15; 0:6� and � 2 �10�4; 10�1�. Standard Lennard-
Jones units [18,20] are used.

Following the theoretical analysis of Ref. [10], our
approach consists of three main steps. We first investigate
macroscopic rheological aspects (flow curves). We then
focus on microscopic properties by an analysis of the
density fluctuations: structure factor, density-density cor-
relation functions. Both aspects will be discussed in much
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FIG. 2. Correlation functions for T � 0:3< Tc and different
values of the shear rate, � � 10�4, 3� 10�4, 10�3, 3� 10�3,
10�2, 3� 10�2, 10�1 (from left to right at C � 0:9) can be
collapsed if the time is rescaled by trel��	. The dashed line is a fit
to a stretched exponential form, with an exponent � � 0:95.

FIG. 1. The ��;T	 plane of the jamming phase diagram. The
dashed curves are the viscosity contour plots with � � 20, 30,
50, 100, 200, 500, 1000, and 2000 (from top to bottom). The full
line is the yield stress �0�T	, from Eq. (1). Arrow marks the
mode-coupling temperature Tc ’ 0:435.
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emerged in Ref. [10], namely, the existence, behavior, and
properties of an effective temperature, defined through a
generalized fluctuation-dissipation theorem [13]. This
point, together with its experimental consequences are
the main object of this paper.

The macroscopic behavior of the system under shear is
summarized in a stress/temperature phase diagram in
Fig. 1. Our results are qualitatively similar to the one
reported in Ref. [15] on a different glass former. A
Newtonian behavior is observed in the high-T, low-�
part of the phase diagram. This corresponds roughly to
situations where ��1 is larger than the relaxation time of
the fluid, which is thus affected only weakly by the flow.
Outside this region, we find that the viscosity of the fluid
decreases when the shear rate increases, a shear-thinning
behavior reported in various ‘‘soft glassy materials’’ [1].
We used the phenomenological relation [1],

� ’ �0 � a�n; (1)

to extract the behavior of the yield stress�0�T	, reported in
Fig. 1. This ‘‘jamming transition’’ line was recently ex-
perimentally investigated [22]. Although our results cover
three decades in shear rate, we cannot report a definitive
functional form for the shear thinning of the viscosity [23]
which can also be satisfactorily described by �0 
 0,
which amounts to describing the system as a power-law
fluid, �� �n�1. In the supercooled regime, we find n ’
1=3, while at lower temperatures, the exponent n is tem-
perature dependent with n! 0 when T ! 0, indicating
that a yield stress could exist in this limit only [21]. The
latter power-law behavior is precisely the one predicted
theoretically in Ref. [10].

Equilibrium mode-coupling theory gives rise to several
quantitative predictions regarding the scaling properties of
the intermediate scattering function,
095702-2
Ck�t	 �
1

N

XN
j�1

hexpfik � �rj�t� t0	 � rj�t0	�gi; (2)

when the glassy phase is approached by lowering T with
� � 0. It was shown in Ref. [10] that similar scaling
properties are expected when the glassy phase is ap-
proached by lowering the shear stress � at constant tem-
perature (vertical line in Fig. 1). We have tested in a
detailed way these predictions in our simulation [21].
Here, we report only the validity of the theoretically pre-
dicted ‘‘time-shear superposition property’’ [10] in Fig. 2,
which shows that the slow decay of Ck�t	 has the scaling
form Ck�t	 ’ F�t=trel	, where the relaxation time is de-
fined, as usual, by Ck�trel	 
 e�1. The scaling function
F�x	 is well described by a stretched exponential, F�x	 �
exp��x�	, with an exponent � which increases from ��
0:77 for T * Tc to the value � � 1 as T ! 0.

We now focus on the issue of an effective tem-
perature for the slow modes of the sheared fluid. This
quantity, naturally included in nonequilibrium mode-
coupling theories [10], is defined through a nonequi-
librium generalization of the fluctuation-dissipation theo-
rem (FDT) [13]. Consider two physical observables, O�t	
and O0�t	, their connected cross-correlation function
COO0 �t	 
 hO�t� t0	O

0�t0	i � hO�t0	ihO
0�t0	i, and the re-

sponse function ROO0 �t	 
 �hO�t�t0	i
�hO0 �t0	

, where hO0 is the field

thermodynamically conjugated to O0�t	. At equilibrium,

both quantities satisfy the FDT, TROO0 �t	 � dCOO0 �t	
dt . The

susceptibility �OO0 �t	 

R
t
0 dt

0 ROO0 �t0	 can be measured
by applying a small (to ensure linear response), constant
field hO0 between times 0 and t, and FDT implies a simple
linear relation T�OO0 �t	 � �COO0 �0	 � COO0 �t	�. In the
sheared fluid, an effective temperature is defined by

ROO0 �t	 � �
1

TOO
0

eff �COO0 	

dCOO0 �t	
dt

; (3)
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where the TOO
0

eff �x	 are a priori arbitrary functions of their
argument, which may in general depend on the observables
O and O0 under study. For any pair of observables, TOO

0

eff �x	
can be measured in the sheared system, by following the
same linear response procedure as above, so that �OO0 �t	 �RCOO0 �0	
COO0 �t	

�dx=TOO
0

eff �x	�. The existence of an effective tem-
perature is thus demonstrated if a straight line is obtained
in a susceptibility-correlation plot parametrized by the
time. Obviously, the introduction of an effective tempera-
ture is of ‘‘thermodynamic’’ interest only if this quantity is
actually independent of the observables under considera-
tion, TOO

0

eff 
 Teff . This crucial feature is true at the mean-
field level [13,14], and we shall prove that it is nicely
satisfied in our model.

We have already shown the existence of such an effec-
tive temperature for the slow modes of the system for a
single correlation function, Eq. (2), at a given wave vector
[20]. We also found that the essential phenomenological
idea that a system sheared more vigorously has a higher
Teff is indeed captured by this definition [20].

Here, we go much further in our investigations and prove
that several different observables lead to the same value of
Teff . Since the numerical measurement of Teff is very
demanding, our strategy has been to compute for T � 0:3
and � � 10�3 the value of Teff from the observables of
Ref. [20] with great accuracy. We found Teff ’ 0:65. We
then computed Teff using different observables, and
checked that the value so obtained was compatible with
Teff � 0:65. Our results are summarized in Fig. 3, which
shows ten among the 14 different susceptibility-correlation
measurements we have performed. All our data are well
compatible with the single value of Teff � 0:65 for the slow
modes of the fluid.

We first investigated the density fluctuations as an ob-
servable, taking O�t	 � 1

N

PN
j�1 "j exp�ik � rj�t	�, and

O0�t	 � 2
P
N
j�1 "j cos�k � rj�t	�. For some wave vectors,
FIG. 3. Ten representative susceptibility-correlation plots are
shown to be consistent with the same Teff for the slow modes
(small value of the correlation). Full lines are the equilibrium
FDT of slope �1=T, dashed lines have slope �1=Teff with
Teff � 0:65. Numbers refer to wave vectors (also see the text).

095702-3
this was done separately for both types (A and B) of
Lennard-Jones particles (noted ‘‘A� B’’ in Fig. 3).
Taking "j � 1 selects the coherent part of the intermediate
scattering function (noted ‘‘coh’’ in Fig. 3), while "j � �1
selects the incoherent one. Such response-correlation plots
could be obtained experimentally in soft condensed matter
systems. While the correlation functions are reasonably
easily obtainable through light scattering experiments,
the same is not true of response functions. To obtain the
latter, one has to manipulate the particles through some
externally applied potential, modulated at the same wave
vector as used in the light scattering experiment. One
suggestion would be to use some nonindex matched tracer
particles in an index matched colloidal suspension. The
tracer particles would then be sensitive to the intensity of
the local electric field, as in optical tweezers. An interfer-
ence pattern would actually realize the modulated external
potential considered here. Reading of the response could
then be obtained from the scattering at the wavelength
corresponding to this pattern.

We also used as a correlation the mean square displace-
ment of a tagged particle. The associated response function
is the displacement induced by applying a small, constant
external force to this tagged particle [24]. Both quantities
are linked by a FDT, the Einstein relation. We computed
both quantities separately for particles of type A and B
(noted ‘‘Self A’’ and ‘‘Self B,’’ respectively). Its interest,
especially in view of experimental realizations, lies in the
fact that the full time dependence of the correlation and
response functions is not needed to extract Teff . Indeed, at
large times, both quantities become proportional to the
time which defines the diffusion constant and the mobility.
One may therefore define Teff simply as the ratio of dif-
fusion to mobility. Again, experiments could be considered
if tracer particles sensitive to an external force field (e.g.,
magnetic particles) could be introduced into the system,
and their mobility measured together with their diffusion
constant.

A completely different observable, relevant to flow situ-
ations, is the stress �. We have studied the case in which
the observablesO andO0 are equal to the diagonal stress in
the direction transverse to the flow, �zz�t	. To add a field
conjugated to �zz, a compression �Lz of the simulation
box is realized by rescaling all particle coordinates at time
t � 0, in analogy to stress relaxation experiments. The
corresponding curve is labeled ‘‘Stress’’ in Fig. 3. Experi-
mentally, the off-diagonal component of the stress would
be used as the observable. Preliminary results in this direc-
tion, using an extremely sensitive rheometer, have been
obtained in aging colloidal systems [25].

Definition (3) of Teff implies that, if the fluid is used as a
thermal bath to equilibrate a subsystem (a ‘‘thermometer’’)
of typical time scale ts � trel, the thermometer does not
measure the microscopic temperature, but rather the effec-
tive temperature associated with its characteristic time
scale [13]. We propose here to use tracers of mass mtr as
095702-3



FIG. 4. Mass dependence of the mean kinetic energy in the z
direction for T � 0:3 and � � 10�3. Horizontal lines are T �
0:3 and Teff � 0:65. Error bars are evaluated from tracer to tracer
fluctuations.
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a thermometer, since tuning mtr allows one to control their
vibration time scale ts. We have considered ten massive
tracers withmtr 2 �1; 107�, but being otherwise identical to
A particles. Since ts �

�������
mtr

p
, heaviest particles have a

frequency typically 103 times smaller than the light ones,
implying ts � trel. Reading of the temperature is done by
measuring the average mean square velocity of the tracers
in the direction z. Results are shown in Fig. 4, which shows
that light particles measure the bath temperature while
heaviest particles measure Teff . This implies that a gener-
alized equipartition theorem holds:�

1

2
mtrv2z

�
�

1

2
Teff : (4)

This result could be tested against experiments involving,
for instance, colloidal particles, the tracers, in a complex
fluid, e.g., polymeric, or by investigating rotational degrees
of freedom of nonspherical tracer particles.

This last result opens the way for new, simple determi-
nations of Teff in out of equilibrium glassy materials.
Indeed, no ‘‘complex’’ dynamic functions such as correla-
tions or susceptibilities are needed here. In this context, it
would be interesting to reproduce Perrin’s experiment on
barometric equilibrium of colloidal suspensions [26]. We
expect indeed that the barometric equilibrium of heavy
particles inside a horizontally sheared fluid should be ruled
by Teff instead of the room temperature.

All these results give strong support to the theoretical
scenario elaborated from mean-field theories to describe
the rheology of soft glassy materials [10]. Note, in particu-
lar, that Teff , which we have shown to be a physically
relevant quantity, is a natural outcome of the theory.
While numerical simulations provide a test of the theory
on short time scales, systematic experiments that could test
095702-4
quantitatively existing theories of nonequilibrium glassy
dynamics are still needed. In that sense, the situation is
more or less similar to the mid-1980’s, when schematic
equilibrium mode coupling were already derived, but with
little experimental confirmation of its main features. This is
why we tried, as much as possible, to suggest experimental
counterparts to our numerical measurements. We hope that
our findings and suggestions will motivate further experi-
mental work in the field.
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