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Axial Magnetic Fields in Relativistic Self-Focusing Channels
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Based on an improved cavitation model for the electron dynamics, an exact analysis is presented of the
generation of axial magnetic fields in the relativistic self-focusing channels produced by circularly
polarized light in plasmas. Two kinds of waveguiding structures are considered: single-channel wave-
guides and plasma filaments surrounded by a light field. It is found that due to large electron density
gradients in the cavitation plasma, magnetic fields of megagauss values with opposite directions separated
by a neutral sheet, where the magnetic field passes through zero, can be produced.
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nonlinearities were taken into account including the con- where z is the propagation coordinate and k � !=c is the
In recent years, the problem of the generation of strong
magnetic fields has assumed an important role in the
studies of superintense laser-plasma interaction [1–3].
This problem has both fundamental and application inter-
ests such as particle acceleration and inertial confinement
fusion, as well as x-ray generation. In particular, increasing
attention has been given to the generation of axial magnetic
fields in an underdense plasma by high power circularly
polarized lasers [4–7] with powers which frequently ex-
ceed the threshold level for relativistic self-focusing [8]
and where self-channeling and cavitation phenomena play
an exceptionally important role [9–11]. The importance of
this phenomenon is not only intrinsic but is also related to
the requirements of most of the advanced application
schemes, e.g., inertial confinement fusion [12], where the
laser radiation has to propagate over distances consider-
ably beyond the diffraction limit. Numerical and experi-
mental studies have given evidence for the formation of
stable channels and radiation filaments [13,14].

As was shown by Sun et al. [9], the properties of
relativistic self-focusing can change drastically for very
high power beams. In this case, the laser intensity is so
strong that the ponderomotive force can expel all electrons
from the region of the high intensity field. The laser
radiation is then confined in a self-induced waveguide,
which is emptied of electrons already for laser powers
slightly exceeding the threshold level, P > 1:1Pcr.
Recent studies [11,14] demonstrated that stable channeling
can occur with propagating power significantly exceeding
the critical one for relativistic self-focusing, i.e., P >
Pcr � 17!2=!2pe GW. However, as was pointed out in
[14], these cavitation structures have nonzero global
charge and, therefore, these and also subsequent works
on magnetic field generation due to the inverse Faraday
effect in the cavitation channel [15–17] deal with a model
where plasma quasineutrality is violated. Recently, an
improved cavitation model that allowed for exact quasis-
teady solutions describing the transverse structures of
waveguide channels with electron cavitation was presented
[18]. In this model both the ponderomotive and relativistic
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straint given by the total charge conservation. The main
feature of the relativistic self-focusing channel in the cav-
itation regime, as seen from the point of view of magnetic
field generation, lies in the large electron density gradients
in the plasma region surrounding the vacuum (pure ion)
channel that occurs due to the charge conservation con-
straint. In the present Letter, based on this model, we
present an exact analysis of the axial magnetic field gen-
eration in the relativistic self-focusing channel produced
by a circularly polarized light and show that the distribu-
tion has oppositely directed magnetic field regions of
megagauss level divided by a narrow neutral sheet where
the field is equal to zero. We pay particular attention to the
neutral sheet because in this region, due to reconnection
processes of magnetic field lines, anomalous dissipation of
energy can take place (see, for example, [19]).

Let us consider the interaction between an underdense
plasma and an ultrahigh power laser with comparatively
long pulses so that the pulse width exceeds the electron
oscillation time (
 � !�1

pe ) but is less than the ion re-
sponse time (
 � !�1

pi ). This makes it possible to treat
the ions as an immobile neutralizing background. Given
the assumptions about the characteristic time scales of the
interacting pulse and the plasma, we expect that stationary
plasma-field structures can emerge, as the electron fluid
should have time to approach a quasisteady state. The
question if these structures actually appear on a time scale
that effectively allows us to disregard other effects and
complications was in fact confirmed by numerical simu-
lations in [14]. In order to arrive at the well-known qua-
sisteady model of relativistic self-focusing, we reduce the
system of Maxwell’s equations and the relativistic hydro-
dynamic equations describing the motion of a cold electron
fluid by adopting the Coulomb gauge

r �A � 0 (1)

and representing the vector potential as a sum of quasistatic
(low frequency) and high frequency parts, A�r; t� �
hAi �r?; z� � Re fA��r?; z� �ex � iey� exp �i�kz�!t��g,
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vacuum wave number. The equation for the quasistatic part
of the potential can be taken in the form

r2hAi �
4�e2

mc2

�
N
�

�
hAi �

4�e2

mc2

��
N
�

�
�

A�

�
; (2)

where h. . .i denotes averaging over the fast optical time
scale, and � � �1� e2jAj2=m2c4�1=2 is the relativistic
factor. Taking into account the Coulomb gauge (1), the
continuity equation can be written as

@N
@t

�
e
mc

�
A � r

N
�

�
� 0: (3)

It should be emphasized that due to the inequality 
 �
!�1

pe , we can adopt a quasisteady model of self-channeling
where the electron momentum can be assumed to be p �
eA=c, if the generalized vorticity was zero before the
arrival of the laser pulse (see, for example, [20]). For the
high frequency part we arrive at the following relativistic
self-focusing equations in the paraxial approximation:

2ik
@A�

@z
�r2?A� �

k2N0
h�i

hNiA� � 0; (4)

r2?’ � 4�e�hNi � N0�; (5)

’=mc2 � h�i � 1 if hNi � 0; (6)

where h�i � �1� e2jA�j
2=m2c4�1=2, r2? � @2=@x2 �

@2=@y2, ’ is the scalar quasistatic potential, and we have
also introduced low and high frequency parts for the elec-
tron density, N � hNi � N�. However, as can be seen
from Eq. (3), which expresses the charge conservation
law that for quasistatic motion implies a requirement on
the vector character of the field only; i.e., for example, in
the axisymmetric case the quasistatic vector potential has
only an azimuthal component, hAi � A’e’. Consequently,
the quasistatic magnetic field, which is defined directly
from the definition of the vector potential,

hBi � r�hAi; (7)

is oriented along the direction of propagation z, hBi � Bez,
where B � �1=r��d�rA’�=dr�. In Eqs. (4)–(6), we can
neglect the influence of the generated magnetic field, since
the corresponding gyrofrequency is much smaller than the
carrier frequency. The equations have to be solved self-
consistently along with the constraint given by total charge
conservation; i.e., the integral over the whole plasma space
of the right hand of Eq. (5) must be equal to zero:Z 1

�1
�hNi � N0�dr � 0: (8)

If this constraint is not fulfilled, self-focusing structures,
even in simulations based on Eqs. (4)–(6), will not satisfy
the quasineutrality condition [14].

Finally, using the high frequency part of Eq. (3), we can
close Eq. (2) with the self-consistent set of Eqs. (4)–(6) and
(8). For axisymmetric plasma-field structures, homogene-
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ous along the propagation path, and assuming a laser field
in the form eA��r?; z�=mc2 � as�r� exp��i�z�, the nor-
malized vector potential a’ � eA’=mc2n

1=2
0 obeys the

following equation:

ra’ �
1

r2
a’ �

ns
�s

a’ � �
a2s
2�s

d
dr

�
ns
�s

�
: (9)

Here r � �1=r�d�rd=dr�=dr, �s � �1� a2s�1=2, n0 �
N0=Nc, and we have used the following dimensionless
variables: r � k

�����
n0

p
r and z � kn0z=2. In these variables,

Eqs. (4)–(6) can be rewritten as

ras �
�
��

ns
�s

�
as � 0; (10)

r�s � ns � 1; (11)

�s � �s � 1 in the region where ns�r� � 0: (12)

Thus the solutions of Eq. (9) depend on the power ~PP �R
1
0 a

2
srdr only or in real parameters they depend on the

relation of laser power over the critical one for relativistic
self-focusing: P=Pcr. Here ns � hNi=N0, �s � ’=mc2,
and � is the propagation constant that must be considered
as an eigenvalue for the corresponding localized eigen-
functions: as�r�; �s�r� ! 0, ns�r� ! 1 at r ! 1 [18]. It
should be noted that when calculating the magnetic field,
Eq. (9) must also be considered within the class of func-
tions for B�r� which vanish at infinity, B�r� ! 0. Thus, the
distribution of the axial magnetic field and its value in the
self-focusing channel are defined by these variables as

B � Bon0
1

r

d�ra’�

dr
� Bon0��r; P=Pcr�; (13)

(Bo � mc!=e) depends on two parameters: the back-
ground plasma density n0 and the laser power trapped in
the waveguide, i.e., P=Pcr. Here the function ��r; P=Pcr�
can be viewed as a universal function characteristic of the
kind of self-channeling structures. We emphasize that the
sources (azimuthal macroscopic current) of axial magnetic
field generation are electron density and/or laser intensity
inhomogeneities as follows from the right-hand side of
Eq. (9) since space charge rotating in the azimuthal direc-
tion in a circularly polarized light can be produced only by
a plasma inhomogeneity (see, for example, [21]) or an
intensity inhomogeneity. In the cavitation channels, the
main contribution comes from the electron inhomogeneity
due to their large gradients, which are able to significantly
modify the magnetic field distribution. Next we consider
two examples of relativistic self-focusing structures that
may represent situations of practical interests.

Single-channel waveguiding.—We start with the most
important solutions describing single-channel waveguide
structures. These structures are stable, in spite of the fact
that they guide laser powers significantly exceeding the
self-focusing power, P � Pcr, and can be produced in
relativistic laser pulse interaction with plasmas. The
095003-2
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improved cavitation model of relativistic self-focusing
suggested in Ref. [18] makes it possible to calculate wave-
guide structures which are consistent with the constraint of
global charge quasineutrality. The idea is that, as follows
from Eq. (12), the solutions of Eqs. (10)–(12) in the
cavitation (ns � 0 at r < R) and noncavitation (ns � 0 at
r � R) regions must be considered separately and their
matching must be done in accordance with the integral
constraint (8). Examples of such solutions for P=Pcr �
1:07, 1.4, and 44 are shown in Fig. 1. An attractive pecu-
liarity of such self-channeling structures from the point of
view of axial magnetic field generation is that the interplay
between the relativistic ponderomotive force expelling
electrons from the cavitation channel and the electrostatic
force due to charge separation leads to electron density
distributions with large gradients. Within this model, the
density profile immediately adjacent to the cavity may look
like a jump, i.e., ns�R� � 0, which means that large azimu-
thal surface currents can be generated on the boundary of
the channel. The density gradients in the deep region (r >
R) may have a reversed sign which gives rise to an oppo-
sitely directed microscopic current. These two currents can
result in the production of a magnetic field distribution
with oppositely directed fields of the same order of mag-
nitudes [see Figs. 1(b) and 1(c)]. For a given solution of
Eqs. (10)–(12), i.e., ns�r� and as�r�, Eq. (9) determines the
axial magnetic field and we solve the equations numeri-
cally by using the shooting method to get a localized
solution for B�r�. In order to do this, we use the vacuum
solution of Eq. (9) in the cavitation region (r < R): a’ �
�chr=2 � Bchr=2Bon0, where the magnetic field is homo-
geneous, B � Bch � const and � � �ch. In the noncavi-
tation region, Eq. (9) must be supplemented with boundary
conditions, where one of them is obtained from the con-
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FIG. 1. Single-channel structures with corresponding magnetic
field distributions for P=Pcr � 1:07 (a), 1.4 (b), and 44 (c):
electron density (dash-dotted line), field (dashed line), and
magnetic field (solid line) distributions.
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tinuity of the vector potential, i.e., a’�R� � �chR=2.
Another condition on the first derivative can be obtained
by integrating Eq. (9) over the boundary at r � R:

a0’�R� �
1

2
�ch �

�
a2s
2�2s

ns

	
r�R

: (14)

Here �ch must be considered as a shooting parameter.
Results of the calculations are presented in Fig. 2 in the
form of functions �ch�P=Pcr� and �m�P=Pcr� that corre-
spond to the axial magnetic field in the vacuum channel
r < R and the maximum of the oppositely directed mag-
netic field in the plasma region, respectively. When P �
Pcr, the oppositely directed magnetic field reaches its
maximum value very near the cavitation boundary r � R,
so the neutral sheet is extremely narrow and located close
to the cavity.

Based on our calculations, we present estimates corre-
sponding to a $ � 1 %m laser with power P � 30 TW and
plasma density N0 � 2:8� 1019 cm�3. In this case
P=Pcr ’ 44, the radius of the cavitation channel is R �
3:8 %m and the magnetic field distribution is as in Fig. 1(c)
with a magnetic field in the channel Bch ’ 1:1 MG and the
oppositely directed magnetic field Bm � Bon0�m ’
�3:7 MG. It should be noted that the self-channeling
plasma-field structures and therefore the axial magnetic
field depend on integral characteristics such as trapped
laser power in the channel, while the ‘‘vacuum focusable
intensity’’ influences rather the possibility of excitation of
these structures and their transient length of excitation.
Although these structures, even with P � Pcr, are stable
against small perturbations, the transient stage, where
filamentation instability can occur leading to the formation
of a number of single channels with P� Pcr, depends on
the geometry of the interaction.
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FIG. 2. Dependence of the magnetic field in the cavity, �ch
(solid line), and the maximum of the oppositely directed mag-
netic field in the plasma region, �m (dash-dotted line), on the
laser power. The inset shows curves in detail at powers near the
critical one.
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FIG. 3. (a) Structure of plasma filament surrounded by field
with corresponding magnetic field distribution for P � 82Pcr:
electron density (dash-dotted line), field (dashed line), and
magnetic field (solid line) distributions. (b) Dependence of the
magnetic field on the axis,�0 (dashed line), the maximum of the
magnetic field in the plasma filament,�m (dash-dotted line), and
the magnetic field in the vacuum channel, �c (solid line), on the
laser power.
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Plasma filament surrounded by a laser field.—Another
relativistic self-focusing structure that can be of interest for
applications is a plasma filament surrounded by a ring-
shaped laser field [18]. An example of such structures
where a central plasma filament with high electron density
is supported by a strong laser field is shown in Fig. 3(a).
These solutions exist only in the cavitation regime where
multifilament self-focusing structures are also possible,
and they are stable if the laser power exceeds the threshold
level, P > Pth � 53Pcr. Since large azimuthal currents
generated on the boundaries R1 and R2 have opposite
directions, for these structures we can also expect large
magnetic field generation in the plasma filament and op-
positely directed magnetic fields in the surrounding vac-
uum channel. The procedure to calculate the magnetic field
for a given plasma-filament structure is as follows: shoot-
ing from the central axis r � 0 of the filament with the
initial conditions a’�0� � 0 and a0’�0� � b, where b is a
shooting parameter, we find the solution for the magnetic
field and calculate a’�R1� and a0’�R1� at the boundary R1.
Then, making use of the vacuum solution, a’ � �cr=2�
const, of Eq. (9) with matching vector potential a’ and its
first derivative a0’ on the boundary R1, we arrive at the
boundary R2, where the boundary conditions are

a’�R2� � a’�R1� � �R2 � R1�
�
a0’ �

a2s
2�2s

ns

	
R1

; (15)

a0’�R2� � a’�R1� �
�
a2s
2�2s

ns

	
R1

�

�
a2s
2�2s

ns

	
R2

: (16)
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Now we can continue by solving Eq. (9) to get the mag-
netic field distribution in all space, requiring that B�r� ! 0
as r ! 1. Results are shown in Fig. 3 as the magnetic field
distribution for P=Pcr � 82 (a), and in (b) as the magnetic
field on the axis, �0 � ��r � 0�, the maximum of the
magnetic field in the plasma filament �m vs P=Pcr, and
�c�P=Pcr� that defines the magnetic field in the vacuum
channel R1 < r< R2 as Bc � Bon0�c.

In conclusion, we have presented an exact analysis of
axial magnetic field generation in plasma channels pro-
duced by circularly polarized light with relativistic inten-
sities. The main consequence of this work is that, at laser
powers higher than the relativistic self-focusing one, dis-
tributions of oppositely directed magnetic fields with field
strengths of the order of megagauss and separated by a
neutral sheet (a region where the field passes through zero)
can be produced in the plasma channel.
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