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Electrodynamics of Metallic Photonic Crystals and the Problem of Left-Handed Materials
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An analytical theory of low frequency electromagnetic waves in metallic photonic crystals with a small
volume fraction of a metal is presented. The evidence for such waves has been obtained recently by
experiments and computations. The cutoff frequency of these waves, !0, is studied. An analytical
expression for the permittivity � is obtained and shown to be negative below !0. If the crystal is
embedded into a medium with a negative �, there are no propagating modes at any frequency. Thus, such
a compound system is not a left-handed material (LHM). The recent experimental results on the LHM are
discussed.

DOI: 10.1103/PhysRevLett.89.093901 PACS numbers: 42.70.Qs, 41.20.Jb, 42.25.Bs, 73.20.Mf
where d is the lattice constant, R is the radius of the
does not contain any mass renormalization due to the
interaction. It is also strange that one should care about
In his seminal work Veselago [1] has shown that if in
some frequency range both the permittivity � and perme-
ability � are negative, the electromagnetic waves
(EMW’s) propagate, but they have some peculiar proper-
ties. All these properties come from the fact that vectors k,
E, H form a left-handed rather than a right-handed set. It
follows that the Poynting vector and the wave vector k
have opposite directions. The materials with these proper-
ties are called the left-handed materials (LHM’s).

The idea that a metallic photonic crystal (MPC) may be
a technological base for the LHM [2,3] appears as a result
of the computational and experimental studies of a few
groups [4–8] which have found the EMW’s in the MPC
propagating above a very low cutoff frequency. The MPC’s
they have considered are three- or two-dimensional lattices
of thin straight metallic wires. Their discovery is very
interesting and important because the waves propagate
under the condition f�=�0! � 1, where f� is an average
conductivity, f being the volume fraction of a metal in the
system. This propagation must be due to the MPC struc-
ture, because it would be impossible in a homogeneous
medium with the conductivity f�.

Various groups obtained different cutoff frequencies and
they understood them differently. The group of Soukoulis
[6] qualitatively interpreted the effect of propagation in
terms of waveguide modes, while the group of Pendry [7]
presented a completely original physical picture based
upon a new longitudinal mode called ‘‘plasma mode.’’
According to Pendry et al. [7] the resulting permittivity
has a plasmalike behavior

�
�0

� 1�
!2

p

!�! � i��
; (1)

however, the ‘‘plasma’’ frequency contains the light veloc-
ity and has a form
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metallic wires, and � is the static conductivity of the metal.
The same results for � and !p have been later obtained
theoretically by Sarychev and Shalaev [9].

The San Diego group has accepted the ‘‘plasma model’’
and considered the negative � at ! < !p as one of the two
crucial conditions for creation of the LHM. To obtain
negative � the split ring resonators (SRR’s) are added to
the MPC [3,10,11]. The first observation of the negative
refraction at the interface of this compound system and
vacuum has been reported recently [10]. The negative
refraction is the most important manifestation of the LHM.

We claim in this Letter that the plasma mode in the MPC
is in fact an EMW and that is why the experiments of the
San Diego group cannot be simply understood using � of
the MPC and � of the SRR’s. Our Letter is organized as
follows. First we discuss the arguments of Pendry et al. [7]
in favor of the plasma model and the theoretical approach
by Smith et al. [8]. Then we derive and solve an exact
dispersion equation for the cutoff frequency !0 and find
��!�. The results are different from Eqs. (1) and (2), but !0

is in very good agreement with all the computational and
experimental data we are aware of. It follows that all
groups discuss the same mode. The permittivity becomes
negative at ! < !0. Then we show that the MPC does not
support any waves if it is embedded in the medium with
negative � and discuss this result together with the experi-
mental results of the San Diego group.

The Pendry group has proposed that the plasma mode in
the MPC appears as a result of an electromagnetic renorm-
alization of the electron mass in the second order in 1=c2.
Because of this renormalization the electron mass becomes
� 15 times larger than the mass of a proton. As a result, the
plasma frequency of the metal shifts down into the GHz
range. It is known, however, that the fields can be excluded
from the interaction energy and the Lagrangian can be
written as a function of instantaneous velocities and coor-
dinates of the interacting charges keeping terms of the
order of c�2 [12]. This so-called Darwin Lagrangian
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both mass renormalization and plasma frequency in con-
nection with a problem based upon Maxwell equations
with a static conductivity. These equations contain neither
electron mass nor plasma frequency, and the very concept
of electrons is not important for them.

The interpretation of the electric permittivity [Eqs. (1)
and (2)] as given by Smith et al. [8] is in terms of conven-
tional electrodynamics, and it provides a reasonable basis
for a discussion. As far as we understand, it is based upon
the ansatz

Eac � E � i	R2!Lj; (3)

where Eac is the electric field acting on a wire, E is the
average field, j � �Eac is the current density, and L is the
self-inductance of the wire per unit length. Using the ansatz
(3) one can easily get Eqs. (1) and (2).

Now we derive an exact dispersion relation for the
s-polarized EMW under the condition f � 1 in the system
of infinite parallel thin straight wires ordered in a square
lattice. The electric field of the wave is along the wires (z
axis), while the wave vector k is in the x-y plane. Assume
that the total current in each wire is I0 exp	�i�!t � k�ri�
,
where ri is the two-dimensional radius vector of the wire in
the x-y plane. The external solution for electric field Ez of
one wire with ri � 0 has a form

Ei
z � �I0�0!=4�H�2�

0 �!�=c�; (4)

where H�2�
0 � J0 � iN0 is the Hankel function which de-

cays exponentially at Im! < 0. Neither J0 nor N0 has this
important property. Here and below we omit the time
dependent factor. The solution is written in cylindrical
coordinates z; �; �, and it obeys the boundary condition
B� � �i=!�dEz=d� � I0�0=2	� at � � R.

The electric field created by all wires is

Ez�r� �
I0�0!
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where �j �
��������������������������������������������
�x � xj�

2 � �y � yj�
2

q
, the summation is over

all sites of the square lattice, and the sum is a periodic
function of r.

The dispersion equation follows from the boundary
condition [13] that relates the total electric field at the
surface of any wire l to the total current through this
wire Ezl � I0 exp�ik � rl�=�ef	R2, where �ef �
2�J1�!R�=!RJ0�!R�, ! � �1� i�=", and " is the skin
depth. At small frequencies, when " > R one gets �ef �
�. At high frequencies, when " � 0:1R, one gets the
Rayleigh formula �ef � �1� i��"=R.

Note that the EMW exists mostly if the skin effect in the
wires is strong. Using Eqs. (1) and (2), one can show that
�=!p � "2=�R2 lnd=R�, where " is the skin depth at ! �
!p (see also Ref. [14]). We show below that the exact
solution has similar properties. That is why we mostly
concentrate here on the case of the strong skin effect.
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Finally, the dispersion equation for !�k�  �% �
i&�c=d has a form

�% � i&�
X
l;m

eid�kxl�kym�H�2�
0 �zlm� �

4c�0
d�eff

; (6)

where zlm � �% � i&�
�������������������������������������
l2 � m2 � �R=d�2

p
, l and m are in-

teger numbers, and the small term �R=d�2 under the square
root is important only when l � m � 0. Taking real and
imaginary parts of Eq. (6) one gets two equations for % and
&.

In the continuum approximation one can substitute the
summation by integration in Eq. (6) to get

1�
c2k2

!2 � i
f�ef

�0!
� 0: (7)

Equation describes propagation of a plane wave through a
homogeneous medium with the conductivity f�ef, which
is possible if f�ef=�0! � 1. However, outside the con-
tinuum approximation there are propagating modes in the
low frequency range f�ef=�0! � 1. For these modes the
fields are strongly modulated inside the lattice cell and
Ez�r� is close to zero near each wire so that the absorption
is small.

We begin with the frequency !0 which is the solution of
Eq. (6) at jkj � 0:

�% � i&�
X
l;m

H�2�
0 �zlm� �

4c�0
d�eff

: (8)

This mode is an eigenmode of the system and its frequency
is the cutoff frequency for the EMW’s. The numerical
results for the real part of the frequency are shown in
Fig. 1. One can see that % is of the order of a few units.
The values of & are of the order of the right-hand side of
Eq. (8). Thus, % � & if f�ef=�0! � 1.

In addition to the numerical solution we propose an
approximation valid at very small f, when j lnfj � 1.
We separate the term with l � m � 0 and substitute the
rest of the sum by the integral. Then

�% � i&�
�
2i
	

�
ln

2

%
���������
f=	

p �C
�
�

4i

�% � i&�2

�
�

4c�0
d�ef�%�f

;

(9)

where we assume that & � %. Here C is the Euler’s
constant. The second term at the left-hand side represents
the average field Ez which can be found from the Maxwell
equation by the following way. One can show that the
average (or macroscopic) magnetic induction B is zero.
Then r�B � 0, ���z � �0@Ez=@t � 0, and

Ez �
I0

i!�0d
2 : (10)

The second term in the square brackets of Eq. (9) is
4Ezd=�0I0c � �4i=�% � i&�. Thus, the expression in
the square brackets describes deviation of the field acting
093901-2



FIG. 1. The real part of the dimensionless cutoff frequency %0

as a function of the volume fraction of metal f. Solid, dashed,
and dotted lines represent solutions of Eqs. (2), (8), and (9),
respectively. The experimental data of Ref. [3] (�) are shown
together with the numerical data of Ref. [6] (�, �, �). On the
main plot * � 0:024, d � 12:7 �m for upper solid, upper
dashed lines, and for the point �; * � 0:078, d � 1:27 �m
for middle solid, middle dashed lines, and for the point �; * �
0:246, d � 0:13 �m for lower solid, lower dashed lines, and for
the point �. In the inset * � 3:4� 10�4, d � 8:0 mm.
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on a wire from the average field and it is assumed that only
one term of the sum in Eq. (8) makes this difference. This
approximation is similar to the ansatz of Smith et al. [8].
The main difference between Eqs. (3) and (8), which is
crucial for the imaginary part of the frequency and also
important for the real part, is the frequency dependence of
�ef due to the skin effect. Say in the work by Smith et
al. [3] "=R � 7� 10�4, so that the skin effect is very
strong.

Figure 1 compares our result for the real part of the
cutoff frequency given by Eq. (8) with the results given by
Eqs. (2) and (9). In these calculations we assume that �ef is
given by the Rayleigh formula so that the right-hand sides
093901-3
of Eqs. (8) and (9) have the form *�1� i�
����
%

p
, where * �

2c�0R=fd�" and " is taken at ! � c=d. One can see from
Fig. 1 that approximation Eq. (9) is much better than
approximation Eq. (2). Both approximations coincide at
small f and are accurate at extremely low values of f ( �
10�7) when the logarithmic term in Eqs. (2) and (9) is very
large. The computational and experimental data of
Refs. [3,6] are also shown in Fig. 1, and they are in a
good agreement with Eq. (8). The results of the Pendry
group [7] (not shown) are also in good agreement with
Eq. (8). Thus, we can make the conclusion that the San
Diego group, the group of Pendry, and the Soukoulis group
discuss the same mode but at different values of parameters
and that our analytical theory describes the same mode
as well.

Now we find the component of electric permittivity
��!� � �zz, which describes the s-polarized extraordinary
waves in the uniaxial crystal. It is defined by the relation

� � �0 � i
~��d
%c

; (11)

where effective macroscopic conductivity ~�� relates aver-
age current density ���z to the average electric field Ez by
equation ���z � ~��Ez. To find ~�� we introduce an external
electric field Eze�i!t. The average field Ez is given by
equation

Ez � Ez � i
I0�0c

d�% � i&�
; (12)

where the second term is the discussed above average field
created by the wires. The boundary condition on a wire
now has a form

I0c�% � i&��0

4d

X
l;m

H�2�
0 �zlm� � Ez �

I0
	R2�ef

: (13)

Making use of Eqs. (12) and (13) one can find a relation
between the current and the average field which gives both
~�� and �. Finally one gets
�
�0

� 1�

	
%

% � i&
� i%

�
% � i&

4

X
l;m

H�2�
0 �zlm� �

c�0
fd�eff

�

�1

: (14)
Assuming that the medium is transparent (& ! 0, � ! 1)
one can get the electric permittivity from the total energy
density U of the electric field U � �1=2�E2

zd�!��=d!. We
have checked that this method gives the same result for
��!�. The expression in the square brackets of Eq. (14) is
the dispersion Eq. (8). One can see that Re� changes sign at
! � !0 and becomes negative at ! < !0, where !0 is the
root of the dispersion Eq. (8). The derivative d�Re��=d! at
! � !0 is the same as the derivative which follows from
Eq. (1) at ! � !p. However, far from the root of � Eqs. (1)
and (14) differ substantially.

To find !�k� one should solve Eq. (6). For small jkj one
can get an analytical result !2 � c2k2 � !2

0, which is
isotropic in the x-y plane.

Now we discuss the possibility of creation of the LHM
using the negative � of the MPC. Suppose that the wires are
embedded into a medium with the negative magnetic
093901-3



VOLUME 89, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 AUGUST 2002
permeability �. One can see that in this case the propaga-
tion of any EMW is suppressed. Indeed, instead of Eq. (6)
one gets equation

X
j

ei�kxxj�kyyj�K0

�
!
c0

����������������������������
x2j � y2j � R2

q �
�

2i

j�j!R2�ef
;

(15)

where c0 � 1=
������������
j�j�0

p
and K0 is the modified Bessel func-

tion. One can see that at jkj � 0 all the terms on the left-
hand side of this equation are positive and real if Im! is
small. Thus, if the right-hand side is small, the equation
cannot be satisfied. At small values of ! and jkj the
summation in Eq. (15) can be substituted by integration.
Assuming that Re! � Im! one gets

1�
k2c20
!2 � �i

�eff

!�0
: (16)

This equation does not have real solutions for !�k�. Thus,
at negative � there are no propagating modes at any
frequency under the study.

This result obviously follows from the fact that ��0 < 0
in the space between the wires. Therefore we get the plus
sign on the left-hand side of Eq. (16) which forbids any
EMW propagation. Thus, instead of the LHM we get a
material without any propagating modes.

Now we compare this result with the theoretical idea
[2,3] to obtain the LHM, where negative � is created by the
system of wires and negative � is created in some other
way. This idea is based upon the assumption that the
negative � at ! < !0 results from a ‘‘longitudinal plasma
mode.’’ It is taken for granted that its frequency is inde-
pendent of magnetic properties of the system, which is
usually the case for plasmons. However, the mode dis-
cussed above is not a plasma mode (see also [15]). One
can show that this mode has zero average value of the
magnetic induction B over the unit cell. In this sense this is
indeed a longitudinal mode. But the average value of the
magnetic energy, which is proportional to B2, is not zero
and it is large. The physics of this mode is substantially
related to the magnetic energy. That is why negative �
completely destroys this mode. It destroys also the region
of negative �. In fact, this could be predicted from the
observation that !0 � c=d becomes imaginary at negative
�. One can see from Eqs. (1) and (2) that at � < 0 one gets
!2

p < 0 and � > 0 at all frequencies assuming that � is
small.

Thus, we have shown that the simple explanation [2,3]
of the negative refraction in the compound system of the
MPC and SRR’s, based upon the permittivity � of the MPC
and the negative permeability � of the SRR’s does not
work because negative � blocks propagation of EMW’s in
093901-4
the MPC. The propagation observed by the San Diego
group might be a manifestation of the remarkable conclu-
sion of Landau and Lifshitz (see Ref. [13], p. 268) that
��!� does not have physical meaning starting with some
low frequency. Then, the explanation of the negative re-
fraction in this particular system would be outside the
simple Veselago scenario (see Ref. [16] as an example).
In this case, to explain the negative refraction one should
use a microscopic equation similar to Eq. (6) but with the
SRR’s included.

Finally, an analytical theory of the low frequency EMW
in the two-dimensional MPC is proposed. It is shown that
the propagation of the low frequency waves is possible
because electric and magnetic fields in the wave are
strongly inhomogeneous inside the lattice cell and that
electric field is small near the wires. If the dielectric part
of the MPC has a negative �, no waves can propagate
through the system. We argue that the explanation of the
experiment Ref. [10] is much deeper than it has been
supposed before.
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