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We report the first measurement of strange (�) and antistrange (�) baryon production from
��������

sNN
p

�
130 GeV Au� Au collisions at the Relativistic Heavy Ion Collider (RHIC). Rapidity density and
transverse mass distributions at midrapidity are presented as a function of centrality. The yield of �
and � hyperons is found to be approximately proportional to the number of negative hadrons. The
production of � hyperons relative to negative hadrons increases very rapidly with transverse momentum.
The magnitude of the increase cannot be described by existing hadronic string fragmentation models
alone.

DOI: 10.1103/PhysRevLett.89.092301 PACS numbers: 25.75.Dw
idity gap into the midrapidity region are also subjects of
considerable experimental and theoretical interest [7–9].

In this Letter we report on midrapidity (jyj< 0:5)
lambda (�) and antilambda (�) production in Au� Au
Ultrarelativistic nucleus-nucleus collisions provide a
unique means to create nuclear matter of high energy
density (temperature) and/or baryon density over an ex-
tended volume [1]. The first results from the Relativistic
Heavy Ion Collider (RHIC) have shown that the large
charged particle multiplicity, measured in Au� Au colli-
sions at

��������

sNN
p

� 130 GeV, corresponds to an energy den-
sity significantly higher than that previously achieved in
heavy ion collisions [2–4]. The yield of baryons and anti-
baryons produced in relativistic nuclear collisions is very
important because it is sensitive to two fundamental, not
yet fully understood aspects of hadron production dynam-
ics: baryon/antibaryon pair production and the transport of
baryon number from beam rapidity to midrapidity. The
nature of baryon/antibaryon production itself is the subject
of much interest, with theoretical conjecture addressing a
range of possible mechanisms from string fragmentation
[5] to exotic mechanisms involving quantum chromody-
namics (QCD) domain walls [6]. The physical nature of the
entity which carries the baryon number and the means by
which the baryon number is transported over a large rap-
Strange baryon/antibaryon production is particularly in-
teresting due to the increased sensitivity to the availability
of strange/antistrange quarks, which is expected to be sup-
pressed relative to light quarks in hadronic matter due to
the strange quark mass. Strangeness production has long
been predicted to be a signature of quark gluon plasma
formation [10]. The strangeness production in previous
generations of heavy ion experiments has been observed
to be significantly increased compared to those from p�
p, p� A, and light ion collisions [11–14], although ques-
tions remain about the exact strangeness production
mechanism. In particular, the relative importance of
strange baryon production from hadronic rescattering dif-
fers between calculations [15,16], depending on both the
evolution of the system and the scattering cross sections
assumed. Exotic dynamical mechanisms that have been
proposed for strange baryon production include, for ex-
ample, color string ropes [17], string fusion [18], and
multimesonic reactions [19]. All require a high local en-
ergy density and therefore suggest that strangeness pro-
duction occurs early in the collision.
092301-2
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FIG. 1. Invariant mass distribution of � (solid circles) and �
(open circles) candidates from the data sample analyzed
including both central and minimum-bias collisions:
(a) 0:4< pT < 0:6 GeV=c; (b) 1:4< pT < 1:6 GeV=c.
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collisions at
��������

sNN
p

� 130 GeV. The data were taken with
the STAR (Solenoidal Tracker At RHIC) detector. The
main components of the detector system for this analysis
have been described in detail elsewhere [20]. They in-
cluded a large volume time-projection chamber (TPC)
[21], a pair of zero-degree calorimeters located at
�18 meters from the center of the TPC, and a central
trigger barrel constructed of scintillator paddles surround-
ing the TPC.

Data from both the minimum-bias trigger and the central
trigger have been used for this analysis. Similar to a
previous analysis [4], the collision centrality was defined
offline using the total charged particle multiplicity within a
pseudorapidity window of j	j< 0:5. The charged particle
multiplicity distribution was divided into five centrality
bins, corresponding to approximately the most central
5%, 5%–10%, 10%–20%, 20%–35%, and 35%–75%
of the total hadronic inelastic cross section of Au� Au
collisions.

The � and � particles were reconstructed from their
weak decay topology, � ! p
� and � ! p
�, using
charged tracks measured in the TPC [22]. Particle assign-
ments for p (p) and 
� (
�) candidates were based on
charge sign and the mean energy loss, hdE=dxi, measured
for each track. Candidate tracks were then paired to form
neutral decay vertices, which were required to be at least
5 cm in distance from the primary vertex. The recon-
structed momentum vector at the decay vertex was re-
quired to point back by a straight line to the primary
vertex within 0.5 cm.

Figure 1 shows the invariant mass distributions for the
reconstructed � and � candidates in jyj< 0:5 for two
typical pT bins from the data sample. The mass resolutions
(�) for reconstructed � and � are typically about
3–4 MeV=c2 based on a Gaussian fit to the peak. The
background beneath the �
�� peak is dominated by com-
binatoric pairs of charged particles. Decays of K0

s !

�
� also contribute to the smooth background due to
pions misidentified as protons. The yield is obtained from
the invariant mass distribution in each transverse momen-
tum (pT) and rapidity (y) bin, where the shape of the
background near the �
�� peak is fit with a second order
polynomial function. Variations in the yield due to differ-
ent fits for the background have been included in the
estimate of systematic errors. The raw yield for each pT �
y bin was then corrected for finite detection efficiency,
which was calculated from embedding simulated � and
� particles in real collision events. Hadronic scatterings
and antiparticle annihilations are included in the simula-
tion. The combined acceptance and efficiency for � and �
ranges from 0:8% to 5:8% as a function of pT for the most
central collision sample.

The measured � spectra contain contributions from
primordial �, �0 decays, and feed-down from multiply
strange hyperons—notably �0 and ��. The primordial �
and the �0 decay products cannot be separated in our
092301-3
analysis and have been treated as primary �. We estimate
the contributions of feed-down from multiply strange hy-
perons, mostly � and � decays, to be approximately 
27�
6�% of the measured � and � yields, respectively. The
estimate was based on the fact that the distance of the
closest approach distribution of � from � decays is differ-
ent from that of primary � production, which we quantified
by extensive comparisons between simulations and real
data [22]. The spectra presented in this Letter include the
decay contribution.

Figure 2 presents the mT spectra (invariant distributions)
of � and � for five selected centrality bins. Combined
systematic errors from various methods of yield extraction,
reconstruction efficiencies, and uncorrected sector by sec-
tor variations in the TPC performance are estimated to be
10%. Both exponential (e�
mT�m�=TE) and Boltzmann
(mTe�
mT�m�=TB) functions have been used to fit the data.
The slope parameter obtained from the exponential fit is
systematically higher than that for the Boltzmann by ap-
proximately 40–65 MeV. However, overall the integrated
yields from both fit functions are consistent within the
statistical errors. The slope parameters and the dN=dy
from these fits are presented in Table I. The Boltzmann
form was adopted in Fig. 2 because it typically provides a
better �2 and gives a reasonable description of the mT
spectra over the entire range of centrality and tranverse
momenta investigated.

Within the systematic error, the slope parameters meas-
ured for the � and � mT distributions are the same. There
is a systematic increase in the slope parameters from
approximately 254 MeV for the least central (35%–75%)
092301-3
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to 312 MeV for the most central (0%–5%) bin. Similar
behavior as a function of centrality is found for the p
transverse mass distributions [23]. Assuming the tempera-
ture at which particle interactions cease (the ‘‘freeze-out
temperature’’ [24]) is constant independent of collision
centrality, the increase in the slope parameter may
be interpreted as an increase in the collective radial veloc-
ity [25,26].

A possible indication of hydrodynamic flow is the in-
crease of the observed mean transverse momenta for vari-
ous species with increasing particle mass. The transverse
momentum distributions of negatively charged hadrons, as
well as p and �, are shown in Fig. 3. The p and � pT
distributions are similar in shape in the region where they
can be compared (below 1 GeV=c), even though the data
TABLE I. Fit parameters from Boltzmann and exponential fits o
statistical errors are presented. The systematic errors on dN=dy and

Centrality 0%–5% 5%–10%

dN=dy � 17:0� 0:4 13:0� 0:3
(Boltz) � 9:6� 0:3

TB � 298� 5 304� 6
(MeV) � 312� 6 310� 6

dN=dy � 17:4� 0:4 13:3� 0:3
(exp fit) � 12:3� 0:3 9:8� 0:3

TE � 355� 8 364� 9
(MeV) � 374� 9 373� 8

092301-4
sets cover somewhat different ranges in pT . Both distribu-
tions are qualitatively different from and much less steep
than the corresponding h� distribution, which is domi-
nated by pions. Qualitatively similar behavior was ob-
served in heavy ion collisions at the CERN Super Proton
Synchrotron (SPS) [25–27]. As predicted, the slope pa-
rameters for all species are observed to be larger at RHIC
[28]. The increase was also described by thermal model
fits, e.g., [29].

Figure 3 indicates that at higher pT (pT > 1 GeV=c) the
ratio of � to negative hadrons increases rapidly. The
baryon to meson ratio at RHIC for pT > 1 GeV=c exceeds
expectations from perturbative QCD inspired string frag-
mentation models which were tuned to fit e�e� collision
f the mT spectra for � and � at midrapidity (jyj<0:5). Only
T are estimated to be 10%.

10%–20% 20%–35% 35%–75%

10:1� 0:2 5:9� 0:2 1:61� 0:05
7:4� 0:2 4:6� 0:1 1:26� 0:04

303� 6 289� 6 254� 5
305� 6 280� 6 258� 5

10:4� 0:2 6:1� 0:2 1:66� 0:05
7:6� 0:2 4:7� 0:1 1:30� 0:04

362� 8 343� 8 295� 7
366� 8 331� 8 301� 7

092301-4



η /d-hdN

0 50 100 150 200 250 300 350

dN
/d

y

0

5

10

15

20 Λ
Λ

FIG. 4. � and � rapidity density as a function of negative
hadron multiplicity at midrapidity. The open symbols in the
figure are data points from an independent analysis of mini-
mum-bias data set using event-mixing techniques. Errors shown
are statistical only.

VOLUME 89, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 26 AUGUST 2002
data and are the basis for modeling particle production in
hadronic collisions as well [5,30,31]. For example, the � to
h� ratio is approximately 0.35 at pT of 2 GeV=c. Data
from e�e� collisions and calculations from string frag-
mentation models, however, indicate that, although the
baryon to meson ratio from quark and gluon fragmentation
increases as a function of Feynman x, the ratio never
exceeds 0.2 [32]. As mentioned above, a natural explan-
ation for the increase at high pT would be a large collective
radial flow at RHIC [24,27]. Alternatively, it has also been
suggested that the energy loss of high pT partons could
modify the baryon to meson ratio [30].

The average ratio of pT integrated yield � to � is
0:74� 0:04
stat� � 0:03
syst� with no significant variation
over the measured range of centrality. Given that there is a
net excess of baryons at midrapidity, it is reasonable to
conclude that there is more than one process contributing
to � production and that significant baryon number from
the colliding beams is transported to � hyperons at mid-
rapidity. A question in that regard is why the shapes of mT
spectra for � and � are the same within errors. It has been
suggested that significant rescattering of � and � during
the evolution of the collision can lead to equilibration
[16,33]. Our measurement provides important constraints
for modeling the mechanism of baryon number transport,
which itself requires further study.

Figure 4 shows the dN=dy of � and � from the
Boltzmann fit as a function of the h� pseudorapidity
density [4]. At midrapidity the hyperon production is ap-
proximately proportional to the primary h� multiplicity in
Au� Au collisions at RHIC. The dashed lines in the figure
correspond to � � 0:054h� and � � 0:040h� from a
linear fit to the data. The systematic errors on the hyperon
yields and the h� are 10% and 6%, respectively. Similar
centrality dependence of the lambda production was ob-
served at the SPS energies. The � to h� ratio at RHIC is
much larger than that at the SPS while the � to h� ratio is
smaller at RHIC [13]. This may be understood from the
fact that at the SPS most of the observed � hyperons carry
baryon number transported from the colliding nuclei
through associated production, rescattering, and fragmen-
tation processes. In this case, the yield of � to h� ratio is
larger than that at RHIC due to the relatively high fraction
of the � yield not resulting from pair production.
Conversely, the increased importance of baryon pair
production at RHIC energies must contribute to the ob-
served increase of the � to h� ratio relative to the SPS
measurement.

In conclusion, we have presented the first inclu-
sive midrapidity (jyj< 0:5) � and � spectra as a
function of centrality from Au� Au collisions at
the

��������

sNN
p

� 130 GeV energy. Salient features of the data
include (i) large slope parameters of transverse mass spec-
tra probably resulting from increased collective radial
velocity at RHIC, (ii) similar shapes for � and � spectra
despite the fact that a significant fraction of the � hyperons
092301-5
at midrapidity carry a baryon number from the incoming
nuclei while the � hyperons are primarily pair produced,
and (iii) a significant increase in the � yield relative to
negatively charged primary hadrons at moderate pT above
1 GeV=c which cannot be described by existing perturba-
tive QCD inspired string fragmentation models alone.
Collective dynamics and/or modified string particle pro-
duction schemes are needed. The pT integrated rapidity
densities of � and � are approximately proportional to the
number of negative hadrons at midrapidity.
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