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Entropic Torque
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Quantitative predictions are presented of a depletion-induced torque and force acting on a single
colloidal hard rod immersed in a solvent of hard spheres close to a planar hard wall. This torque and force,
which are entirely of entropic origin, may play an important role for the key-lock principle, according to
which a biological macromolecule (the key) is functional only in a particular orientation with respect to a

cavity (the lock).
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The depletion effect, i.e., the effect that smaller particles
in a colloidal mixture are expelled from those regions
where bigger particles are sufficiently close together, leads
to an effective force between the bigger particles. In the
case of hard-core interactions, these effective forces are
purely entropic in origin [1,2]. For the relatively simple
geometries of two large spheres or a sphere close to a
planar or curved wall in a solvent of small hard spheres,
this depletion force has been studied in detail in theory
[3-5], simulation [6,7], and experiment [8,9]. Depletion
forces are crucial for the phase behavior of colloidal sys-
tems; they can drive gas-liquid and liquid-solid phase
separation, e.g., in colloid-polymer [10] and colloid-
colloid mixtures [11]. It has been suggested [12] that
depletion effects play an important role in the biological
“key-lock” mechanism, in which a nonspherical macro-
molecule (the key) fits into a cavity (the lock) and forms a
chemical bond, once the key has a particular orientation
and is sufficiently close to the lock. A robust performance
of this mechanism is possible only if the biological envi-
ronment is capable of passively transporting the key, cor-
rectly oriented, to the lock. This requires a chemically
unspecific force to transport the center of mass of the
macromolecule towards the cavity and a chemically un-
specific torque to orient it. Depletion effects provide such a
mechanism since they rely on the principle of maximum
entropy of the solvent formed by a solution of macro-
molecules and not on the details of the interaction or the
chemistry. Given the fairly high concentrations of macro-
molecules in a cell [13], these effects can be strong.

In order to be able to study the relevance of the entropic
contribution to this mechanism, a quantitatively reliable
tool for predicting such an entropic torque is needed. Using
density functional theory and computer simulations, we
show and predict quantitatively that depletion effects can
generate both a force and a torque on a nonspherical
particle in the vicinity of a planar wall, thereby providing
further evidence for the relevance of depletion phenomena
in key-lock mechanisms.
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The specific system we study is illustrated in Fig. 1 and
consists of (i) an infinite planar hard wall located at z = 0,
(ii) a hard spherocylinder with cylinder length L, diameter
o, at distance z from the wall and forming an angle 6§ €
[0, 77/2] with respect to the wall normal, and (iii) a solvent
of hard spheres with diameter o, and number density p, in
the bulk, i.e., far away from the wall. Since we are consid-
ering only hard interactions, the temperature 7" of the
system plays only the role of an energy scale via 8 =
1/kpT. We are interested in the effective rod-wall potential
W(z, 6) induced by the spheres. The force and the torque
on the rod follow by differentiating —W(z, #) with respect
to z and 0, respectively. The bare rod-wall interaction
restricts the center of mass of the rod to z = z,,;,,(6) =
(o + L|cosf|)/2. The system, and hence BW(z, 0), is
completely characterized by the aspect ratio L/o of the

N
z=0
FIG. 1. A spherocylinder of length L and diameter o at angle 6

and distance z relative to a planar hard wall at z = 0. The
minimal value of z is zy;,(0) = (o + L|cosf|)/2. The rod is
immersed in a solvent of hard spheres of diameter o, and
number density p, far from the wall.
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rod, the diameter ratio /o, and the packing fraction
n = p,ma; /6.

Following the idea of Asakura and Oosawa [1], a first
approximation of the effective potential W(z, #) can be
obtained from the analysis of the volume that is excluded
to the centers of the solvent spheres by the wall and the rod.
The wall excludes the slab 0 < z < o;/2, and the rod the
volume of a spherocylinder of length L and diameter
o + o,. If these two contributions to the excluded volume
overlap, i.e., for z <z, T o, (see Fig. 1), the volume
accessible to the centers of the spheres and hence the
entropy of the solvent increases. This gain of entropy
translates directly into an effective, purely attractive force
acting on the center of the rod. An important ingredient of
this so-called Asakura-Oosawa approximation (AOa) is
that the density profile of the spheres is taken to be constant
and equal to the bulk density p,. Within this approximation
one neglects all solvent-solvent correlations. By taking
these correlations into account, an oscillatory solvent den-
sity profile is obtained, which increases the range and
usually also the strength of the depletion force.

Here we go beyond the AOa taking the sphere-sphere
correlations into account. We recall that the depletion
potential equals the grand-potential change of the (inho-
mogeneous) fluid of spheres in contact with the wall upon
moving the rod from z — oo to a finite value of z, at a
given 6. Within density functional theory (DFT), with
Felps pr] the excess (over ideal) free energy functional
of a mixture of hard spheres and rods, one can write [5]

BW(z 0) = lim[c}"(z— o0,0) = ¢}z )} (D)
P

where ¢\V(z, 8) = =8B F . [p,, p,1/5p,(z, 6) is the direct
one-body correlation function of the rods [14], where
p,(z, 0) is the number density of rods for a given orienta-
tion #. The functional we use is based on Rosenfeld’s
fundamental measure theory (FMT) for mixtures of gen-
eral convex hard bodies [15]. FMT has proved to account
accurately for both the structure and the thermodynamics
of inhomogeneous hard-sphere mixtures [16] as compared
with simulations. Recently, a FMT for a mixture of spheres
and needles of vanishing thickness was proposed [17]. Our
extension to include a nonspherical particle with finite
volume (the rod) in the theory requires the deconvolution
of the Mayer-f function of the rod-sphere interaction into a
set of orientation dependent weight functions [15]. The
details of this technically involved deconvolution will be
explained elsewhere [18].

We present results for L/o =10, o/o, =1, and a
packing fraction %, = (7/6)o3p, = 0.2239 for the
spheres. Figure 2 displays the depletion potential
BW(z, 6) as function of z and 6. The first observation is
that the potential is, unlike the AOa, not monotonic; the
hard-sphere correlations generate a sequence of potential
barriers and wells. The dashed and dotted curves in Fig. 2
denote the positions of the minima and maxima of the

088301-2

B W(z,6)

4

90

0 [degrees]

00

FIG. 2. Depletion potential BW(z, 8) for the spherocylinder
shown in Fig. 1 for L/o = 10, /oy, = 1, and a packing fraction
N, = p,mo3/6 = 0.2239 of the hard-sphere solvent. The
dashed and dotted lines represent the positions of local minima
and maxima, respectively.

potential. We note that for small angles § < 1, the shape
of the rod-wall depletion potential W(z, #) coincides al-
most perfectly with the depletion potential W, (z) between
a sphere of diameter ¢ and the wall; i.e., W(z, 0 < 1) =
W,,s(z — L cos|8|/2). For these small angles the length of
the rod L is rather unimportant for details of the depletion
potential, as we have verified for various values of L/o and
o/o. For large angles, however, the whole geometry of
the rod, i.e., L/o and o/, is relevant, and the depth of
the depletion potential at contact becomes more negative
as both L/o and o/o, are increased. In addition, the
contact value of the depletion potential can be further
decreased by increasing 7.

Although certain general trends of the influence of the
geometry on the shape of the depletion potential can al-
ready be roughly understood within the simple AOa [1], the
correlations in the hard-sphere fluid are very important and
can lead to a quantitatively and even qualitatively different
behavior. In Fig. 3 we illustrate this by plotting cuts
BW;(0) = BW|[zmin(6) + jo/4, 6] of the depletion poten-
tial, with j =0, 1,2, 3, both for our DFT results (full
curves) and for the AOa (dotted curves). The contact value,
corresponding to j = 0 as obtained from the DFT calcu-
lations, is seen to be more negative than within the AOa for
small and large 6, but for intermediate @ this is reversed by
packing effects. For rods almost parallel to the wall, i.e.,
6 =~ 90°, the AOa underestimates the DFT contact value
much more pronouncedly than in the well-studied wall-
sphere and sphere-sphere geometry. The cuts correspond-
ing to j = 1, 2, 3, which characterize the potential for rods
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FIG. 3. Different cuts through the depletion potential

BW[zmin(0) + jo/4,6] for j=0,1,2,3 as calculated within
DFT (full line) and the corresponding quantity within the AOa
(dotted line) for the system described in Fig. 2. The correlation
effects in the solvent cause quantitative and qualitative differ-
ences. Note that for reasons of clarity the curves for j = 2 and
Jj = 3 have been shifted by 2 and 4, respectively.

further from the wall, reveal that the monotonic AOa
completely misses the ‘“‘torque barriers’ predicted by the
DFT for large 6.

As a consequence of the dependence of the rod-wall
depletion potential on the orientation 6 for a given (fixed)
distance z of the center of the rod from the wall, an entropic
torque acts on the rod which drives it into an orientation
with minimal depletion potential. This torque can be esti-
mated by replacing the spherocylinder by a dumbbell
composed of two spheres with diameter o connected by
an infinitesimally thin but rigid wire of length L. Since the
sphere-wall depletion force f,,,(z) acts on the two spheres
located at z. = z = (L/2) cosf, the corresponding torque
with respect to the center of mass is given by

Maple, 0) = Zsinblfc) = funle)) @)

It turns out that at low packing fractions of the hard-sphere
solvent, or at sufficiently large separations of the rod from
the wall, Eq. (2) yields a semiquantitative expression for
the torque acting on a spherocylinder.

From the full rod-wall depletion potential W(z, 8) one
can obtain the torque by rotating the rod by an infinitesimal
angle d6 around an axis through the center of the rod in a
direction characterized by the unit vector ny normal to the
symmetry plane shown in Fig. 1. The corresponding
change in the depletion potential is dW(z, ) which can
be written as dW = — >, f; - dr;, i.e., as a sum of forces f;
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acting on the rod at positions r; from the center with dr; =
df(r; X ny). It follows that the torque Mz, ) =
M(z, 6)n, with respect to the center of mass is given by

_OW(z, 0)

M(z, 6) = Y:

3)

The symmetry of the problem leads to M(z, ) =0 for
0 =0 and 6 = 7/2. A positive value of the torque acts
on the rod as to increase the angle 6 (rotating it parallel to
the wall), while a negative value of M leads to a decrease of
0 (rotating it normal to the wall). Some typical examples
for the torque as a function of  for various values of z are
shown in Fig. 4. Lines and symbols denote results from
DFT and molecular dynamics (MD) simulations, respec-
tively. The DFT predictions are in excellent agreement
with the simulations. The details of the simulations will
be presented elsewhere [18].

For larger distances of the rod from the wall W(z, 0)
exhibits local minima and maxima in addition to the global
minimum with corresponding zeros of the torque (see Fig. 4
for z = 5.50 and z = 4.50). A minimum (maximum) of
W(z, 0) leads to a zero of M(z, #) with a negative (positive)
gradient in #. Furthermore, the torque can exhibit a cusp
(see Fig. 4) if the minimal distance between the wall and
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FIG.4. The torque BM(z, 6) as function of 6 for various values
of z. For reasons of clarity the curves for z = 4.5,3.4,... are
shifted downward by —5, —10, ..., respectively. The horizontal
lines M = 0 are indicated partially. The parameters of the system
are the same as in Fig. 2. Because of the hard wall at z = 0 the
torque is defined only for # = arccos(2z/L — o/L) if z < (0 +
L)/2. M > 0 (<0) corresponds to a force which tends to align
the rod parallel (normal) to the wall. The lines denote our DFT
results which are in excellent agreement with our simulations
(symbols). The error bars of the simulations are of the order of
the symbol size.
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the rod leaves space for precisely one solvent sphere.
This can be realized for distances o + /2 = z < o, +
(L+0)/2 and a corresponding orientation 6, =
arccos{[2(z — o,) — o]/L}.

As the rod moves closer to the wall, the modulus of the
torque increases and, for small separations from the wall
(see, e.g., z = 1.50, in Fig. 4), the torque vanishes only for
0 = /2 which is, however, only a metastable configura-
tion. For such small and fixed values of z the entropic
torque rotates the rod towards configurations with smaller
angles until the rod is in contact with the wall and has to
stop its rotation. Thus the rod reaches its most favorable
configuration of lying parallel in contact with the wall not
by approaching the wall in a parallel configuration but by
touching the wall first at one end and then by decreasing
the distance of its center from the wall. The modulus of the
maximum of the entropic torque for the system considered
here is of the order of about 20kyzT rad~!, which corre-
sponds to roughly 1072 Jrad~! at room temperature. The
strength of the torque increases for larger values of L/ o,
o/ag, or n,. For example, for L/o = 20, o/o; = 2, and
7, = 0.2239, the modulus of the maximum of the entropic
torque reaches a value of about 38.7k,T rad~!. We note
that the maximum torque acts at small values of z for which
the AOa also would predict the existence of a torque;
however, its magnitude is largely enhanced through the
correlations in the solvent.

With the results presented so far we can comment on
some aspects of the path in the z-6 plane a rod would take
upon approaching the wall from the bulk. Only if the rod
comes sufficiently close to the wall to be subject to the
oscillations of the number density of the hard-sphere fluid
as a function of z will the entropic force and torque act on
it. The closer the rod gets to the wall, the higher are the
potential barriers between the minima (see Fig. 2). Thus it
is increasingly difficult to come even closer. For small
angles, say, 8 < 60°, the barriers are only moderate and
easy to overcome by thermal fluctuations. For larger angles
the barrier is higher; it exceeds 2.3kgT at 6§ = 90° for the
present parameters. This indicates that it is relatively un-
likely that a rod is transported to the wall while its ori-
entation is & = 90°; it could easily get trapped (for a while)
into the local minimum at z = ¢. Instead, (much) smaller
barriers need to be crossed if @ is small until contact is
established, z = z,,,(#), followed by a barrier-free rotation
into the global minimum.

We have presented quantitative predictions of the en-
tropic torque acting on a hard spherocylinder close to a
hard planar wall in a solvent of small hard spheres. Our
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DFT predictions are in excellent agreement with our MD
simulations. We find that the depletion effect leads to a
significant entropic torque, and it is tempting to speculate
that this entropic torque can play an important role in
understanding the key-lock principle.
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