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Bloch Waves, Periodic Feature Maps, and Cortical Pattern Formation
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Perturbation methods are used to solve the eigenvalue problem for cortical pattern formation in the
presence of long-range neural connections. Such connections have a crystallinelike structure that breaks
Euclidean symmetry to the discrete symmetry of a planar lattice group. Conditions for marginal stability
are derived with the associated eigenmodes identified as Bloch waves.
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with the distribution of CO blobs, affects the large-scale
dynamics of the cortex. In particular, we show how pertur-

to be of the order of 0.5 mm. Let � be the angle between the
two basis vectors ‘1 and ‘2. We can then distinguish three
One of the major simplifying assumptions in most large-
scale models of cortical tissue is that the interactions
between cell populations are invariant under the action of
the Euclidean group of rigid body motions in the plane.
Euclidean symmetry plays a key role in determining the
types of activity patterns that can be generated spontane-
ously in these cortical networks. (For a review, see
Ref. [1].) However, the assumptions of homogeneity and
isotropy are no longer valid when the detailed microstruc-
ture of the cortex is taken into account. In fact, the cortex
has a distinctly crystallinelike structure at the mm length
scale. This is exemplified by the distribution of cytochrome
oxidase (CO) blobs in primary visual cortex (V1). These
regions, which are about 0.2 mm in diameter and about
0.4 mm apart, coincide with cells that are more metaboli-
cally active and hence richer in their levels of CO [2].
Moreover, the distribution of the CO blobs is correlated
with a number of periodically repeating feature maps in
which local populations of neurons respond preferentially
to stimuli with particular properties such as orientation,
spatial frequency, and left/right eye (ocular) dominance
[3]. It has thus been suggested that the CO blobs are the
sites of functionally and anatomically distinct channels of
visual processing [4,5].

How does the periodic structure of visual cortex mani-
fest itself anatomically? Two cortical circuits have been
fairly well characterized. There is a local circuit operating
at submillimeter dimensions in which cells make connec-
tions with most of their neighbors in a roughly homoge-
neous and isotropic fashion [6]. The other circuit operates
over a range of several millimeters and is mediated by the
laterally spreading patchy connectional fields made by
pyramidal neurons in the superficial layers of V1. By
matching anatomical projections with optically imaged
feature maps, it has been shown that these lateral connec-
tions, which are broken into discrete patches with a very
regular size and spacing [7–9], tend to link neurons having
common functional properties as determined, for example,
by their proximity to CO blobs [10–12].

In this Letter, we investigate how the periodic structure
of lateral interactions, which is assumed to be correlated
0031-9007=02=89(8)=088101(4)$20.00 
bation methods familiar from the analysis of the
Schrödinger equation in a weak periodic potential [13]
can be used to solve the eigenvalue problem for cortical
pattern formation in the presence of periodically modu-
lated long-range connections, with the resulting marginally
stable eigenmodes identified as Bloch waves.

Our starting point is to treat a cortical layer of V1 as a
continuous two-dimensional medium evolving according
to the rate equation [1,14]

@a�r; t�
@t

� ��a�r; t� �
Z
R2
w�r j r0���a�r0; t�	dr0 � h�r�:

(1)

The scalar field a�r; t� represents the local activity of a
population of (excitatory and inhibitory) neurons at cort-
ical position r � �x; y� 2 R2 at time t, � is a decay rate
(associated with membrane leakage currents or synaptic
currents), h�r� is an external input, and the distribution
w�r j r0� is the strength of connections from neurons at r0 to
neurons at r. The nonlinear firing-rate function � is as-
sumed to be a smooth monotonically increasing function of
the form ��z� � 1=�1� e���z���	 for constants � and � .
The weight distribution w is decomposed into local and
long-range parts (see also Ref. [15]) according to

w�r j r0� � W�jr� r0j� � "wlat�r j r0�; (2)

where W represents the local connections with jr� r0j ��������������������������������������������
�x� x0�2 � �y� y0�2

p
the Euclidean distance between

two points in the cortical plane, wlat represents the distri-
bution of excitatory lateral connections, and " is a coupling
parameter. Experimentally, it is found that the lateral con-
nections modulate rather than drive V1 activity [9], sug-
gesting that j"j is small. The sign of " determines whether
the lateral connections have a net excitatory or inhibitory
effect.

Motivated by the anatomy highlighted in the introduc-
tion, we assume that there exists a set of CO blobs arranged
on a regular planar lattice L generated by two linearly
independent vectors ‘1 and ‘2: L � fm1‘1 �m2‘2 :
m1; m2 2 Zg. The lattice spacing L � j‘1j � j‘2j is taken
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types of lattice depending on the value of �: square (� �
�=2), rhombic (0< �< �=2, � � �=3), and hexagonal
(� � �=3). It is further assumed that the preference of a
cell for a particular stimulus feature such as orientation is
determined by its position relative to this lattice. We then
take the local connections W to have a spread covering
approximately a single lattice spacing L so that they are
broadly tuned with respect to feature preferences, whereas
the lateral connections wlat are taken to be narrowly tuned
and to couple cells with similar feature preferences in
distinct hypercolumns (defined as a fundamental domain
of the lattice L). This is illustrated in a one-dimensional
version of the model in Fig. 1

An interesting recent experimental finding is that some
cells located within intermediate distances from CO blobs
have very little in the way of lateral connections [12] thus
leading to an effective reduction in connectivity at the
population level. This suggests that there is a periodic
variation in the strength of the lateral coupling; that is,

wlat�r j r0� � D�r�J�r� r0�; (3)

where D is a doubly periodic function; that is, D�r� ‘� �
D�r� for all ‘ 2 L, and J�r� incorporates the condition
that long-range connections only link cells with similar
feature preferences as determined by their location relative
to CO blobs. The latter condition is implemented by setting
J�r� �

P
‘2L J‘
�P 0 � P ‘�r�	, where (i) 
�x� � 1 for

x > 0 and 
�x� � 0 for x < 0, and (ii) P ‘�r� � jr� ‘j
if jr� ‘j< jr� ‘0j for all ‘0 � ‘ and is equal to L other-
wise. The parameter P 0, 0< P 0 <L=2, determines the
patch size and J‘ represents the decay in the strength of
patches with lattice separation ‘. An example of wlat is
shown in Fig. 2.

Suppose that there exists a homogeneous fixed point
solution of Eq. (1), a�r; t� � a0. (For the given nonlinearity
�, at least one fixed point exists in the case of homoge-
neous weights w and a uniform input h. Such a fixed point
persists in the presence of weak inhomogeneties.) Setting
a�r; t� � a0 � e�ta�r� and linearizing about the fixed point
leads to the eigenvalue equation

�a�r� � �a�r� ��
Z
R2
w�rjr0�a�r0�dr0; (4)
(n+1)LnL

(n+1)LnL
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FIG. 1. One-dimensional periodic lattice of CO blobs. Neurons
are coupled by broadly tuned local connections (solid curves)
and narrowly tuned long-range horizontal connections (dashed
curves).
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where � � �0�a0� and we have fixed the time scale by
setting � � 1. Since the weight distribution w is bounded,
it follows that when the network is in a low activity state a0
such that � � �0�a0� 
 0, any solution of Eq. (4) satisfies
Re� < 0 and the fixed point is linearly stable. However,
when the excitability of the network is increased, either
through the action of some hallucinogen or through exter-
nal stimulation, � increases. This can induce an instability
leading to the formation of spontaneous cortical activity
patterns. We shall derive conditions for the onset of such an
instability for the weight distribution (2).

First consider the case of zero lateral connections such
that w�r j r0� � W�jr� r0j�. The distribution w is then
invariant with respect to the Euclidean group, and the
eigenmodes are in the form of plane waves ak�x� � eik�r

with wave number k. Substitution into Eq. (4) shows that
the corresponding eigenvalues are ��k� � �1�� ~WW �k�,
where k � jkj and ~WW �k� is the Fourier transform of W�r�;
that is, ~WW �k� �

R
R2 W�r�e�ik�rdr. Assume that W consists

of a mixture of short-range excitation and longer-range
inhibition (see Fig. 2) such that ~WW �k� is bounded with a
global positive maximum at k � kc � 0. Then, for suffi-
ciently small �, ��k�< 0 for all k and the zero solution is
stable. However, as � increases, the zero solution desta-
bilizes at the critical value �c � �= ~WW �kc� due to excita-
tion of plane waves with critical wave number kc. Rotation
symmetry implies that the space of marginally stable states
is infinite dimensional; that is, all plane waves with wave
vectors k lying on the critical circle jkj � kc are allowed.

If the lateral connections are now switched on, continu-
ous Euclidean symmetry is restricted to the discrete sym-
metry group 
L of the lattice L, since w is now doubly
periodic with w�r� ‘ j r� ‘� � w�r j r0� for all ‘ 2 L.
It then follows that solutions of Eq. (4) are in the form of
Bloch waves [13]: ak�r� � eik�ruk�r� with uk�r� ‘� �
uk�r� for all ‘ 2 L. In order to show this, we introduce
the Fourier series expansions D�r� �

P
qDqeiq�r for q �P

j�1;2 2�nj‘̂‘j and a�r� � ��1
P

k ake
ik�r for k �P

j�1;2
2�mj

N ‘̂‘j, where ‘̂‘j, j � 1; 2, are the generators of
the reciprocal lattice L̂L such that ‘̂‘i � ‘j � $i;j. We have
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FIG. 2. (a) Plot of patchy lateral connections wlat�r j r0� on a
square lattice as a function of cortical separation �r � r� r0 (in
units of the lattice spacing L). The strength of the connections
is indicated using gray scale. (b) Cross section of wlat along
the x axis together with an example of a local Mexican hat
distribution W.
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FIG. 3. Selected wave vectors on the critical circle for a square
lattice. (a) Nondegenerate case: the critical circle lies well within
the first Brillouin zone. (b) Degenerate case: the critical circle
intersects the border of the first Brillouin zone, and there is a
doubling up of the marginally stable modes.
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also imposed the periodic boundary condition a�r�
N‘j� � a�r�, j � 1; 2, for some integer N � 1 and set
� � �NL�2. Equation (4) then reduces to the form

��� ��� ~WW �k�	ak � "
X
q

V q�k�ak�q; (5)

where V q�k� � ~JJ�k� q�Dq and ~JJ�k� is the Fourier
transform of J�r�. Equation (5) implies that the lateral
interactions only couple together those coefficients
ak; ak�q; a0k�q; . . . whose wave vectors differ by a recip-
rocal lattice vector. Hence, we obtain Bloch waves with
u�r� the periodic function u�r� �

P
q ak�qe

�iq�r.
It is generally not possible to find exact solutions of the

eigenvalue equation (5). However, we can proceed by
carrying out a perturbation expansion with respect to the
small coupling parameter " along analogous lines to solv-
ing the Schrödinger equation in a weak periodic potential
[13]. Let kc be the critical wave number for a pattern
forming instability when " � 0. We also define N "�kc�
to be a small neighborhood of the critical circle jkj � kc.
We then have to distinguish between two scenarios based
on whether or not the following degeneracy condition
holds: there exists a reciprocal lattice vector Q such that

j ~WW �jkj� � ~WW �jk�Qj�j � O�"�; k 2 N "�kc�; (6)

and j ~WW �jkj� � ~WW �jk� qj�j � " for all q � Q. Note that
the exact degeneracy condition ~WW �jkj� � ~WW �jk�Qj� is
only satisfied if jkj � jk�Qj. This means that k must lie
on the perpendicular bisector of the line joining the origin
of the reciprocal lattice L̂L to the lattice point Q; that is, it
lies on the boundary of a Brillouin zone [13].

First, suppose that Eq. (6) does not hold; that is, if k 2
N "�kc�, then j ~WW �jkj� � ~WW �k� q�j � " for all q 2
L̂L;q � 0. This occurs, for example, if the critical circle
lies well within the first Brillouin zone. A standard pertur-
bation calculation then shows that to first order in " the
eigenmode uk�r� � 1 and � � �1��� ~WW �jkj� �
"V 0�k�	. To leading order in ", the marginally stable
modes will be those modes on the critical circle that max-
imize (minimize) the term V 0�k� for " > 0 (for " < 0).
Since V 0�k� is invariant with respect to the corresponding
lattice group 
L, a particular wave vector k� on the critical
circle will typically be selected together with all modes
generated by discrete rotations of the lattice. (We ignore
accidental degeneracies here). This is illustrated in Fig. 3(a)
for the square lattice. The eigenmodes will thus be of the
form a�r� �

P
j�1;...N uje

ik�r
j � c:c: Here N � 2 for the

square lattice with k1 � k� and k2 � R�=2k�, where R�
denotes rotation through an angle �. Similarly, N � 3 for
the hexagonal lattice with k1 � k�, k2 � R2�=3k�, and
k3 � R4�=3k�.

Now suppose that the degeneracy condition (6) is sat-
isfied for some Q 2 L̂L, which implies that the critical
circle is close to a Brillouin zone boundary [see
Fig. 3(b)]. Then, to first order in ", Eq. (5) reduces to a
088101-3
pair of equations for the coefficients ak and ak�Q:

�� E�k� "VQ�k�
"V�Q�k�Q� �� E�k�Q�

� �
ak

ak�Q

� �
� 0; (7)

where E�k� � �1��� ~WW �jkj� � "V 0�k�	. Assume for
the moment that the exact degeneracy condition ~WW �jkj� �
~WW �k�Q� holds so that k is on a Brillouin zone boundary.
As a further simplification, let ~JJ�k� q� � ~JJ�k� for all
q 2 L̂L so that V�Q�k�Q� � VQ�k�. (This is a good
approximation when the patch size P 0 is small). The above
matrix equation then has solutions of the form

���k� � �1��f ~WW �jkj� � "�V 0�k� �VQ�k�	g; (8)

with ak�Q � �ak. Thus there is a splitting into even and
odd eigenmodes u�k �r� � eik�r � ei�k�Q��r. (If k is close to,
but not on, the Brillouin zone boundary, there will be a
slight mixing between the even and odd eigenmodes—this
will not modify our conclusions significantly.) Let k�

denote global maxima of the functions ���k� and set k� �
k� if ���k�� > ���k��, and k� � k� otherwise. It fol-
lows that the marginally stable eigenmodes will be of the
approximate form a�r� �

P
j�1;...N zju

�
kj
�r� � c:c: with

k1 � k� and kj; j � 2; . . . ; N, related to k� by discrete
rotations of the lattice. Even ( � ) modes will be selected
when k� � k� and odd ( � ) modes when k� � k�.

We conclude from the above analysis that the crystal-
linelike structure of V1, as manifested by a periodicity in
the distribution of lateral connections, can have a major
effect on the types of spontaneous activity patterns gener-
erated in the cortex: (i) Doubly periodic patterns such as
rolls, squares, and hexagons occur through an explicit
breaking of continuous Euclidean symmetry by a physical
lattice of CO blobs. Such activity patterns are of particular
interest, since they provide a possible explanation for the
occurrence of certain basic types of geometric visual hal-
lucinations [16,17]. (Note that in Euclidean symmetric
models of cortical pattern formation, the double periodicty
of the solutions is imposed by hand as a mathematical
simplification rather than reflecting the existence of a
real lattice.) (ii) There is an analog of ‘‘Bragg scattering’’
088101-3
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FIG. 4. Even and odd eigenmodes localized around blob and
interblob regions.
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[13] within the context of neural pattern forma-
tion whereby for certain critical wave numbers kc the
resulting activity patterns are localized around either CO
blobs or around interblob regions as illustrated in Fig. 4.
This follows from the structure of the even and odd solu-
tions of Eq. (7), which are in the form of standing waves
whose amplitudes vary as cos�Q � r=2� and sin�Q � r=2�,
respectively.

More generally, our work shows how techniques famil-
iar in the study of crystalline solids can be used to analyze
the large-scale spontaneous dynamics of the cortex. We
have focused on the distribution of CO blobs, since this is
one candidate structure for breaking the translation sym-
metry of cortex. However, the same methods could also be
applied to other latticelike structures such as the distribu-
tion of orientation singularities. (The CO blobs appear to
coincide with about half the singularities, namely, those
associated with low spatial frequencies [3].) We note that
these various lattices have substitutional and topological
disorder, both of which need to be taken into account in a
more detailed study. Understanding the spontaneous be-
havior of the cortex may also provide insights into the
stimulus evoked response properties of the cortex.
Indeed, recent optical imaging experiments have revealed
that the cortex exhibits activity patterns in the absence of
external visual stimulation that resemble those induced by
a single oriented stimulus [18]. Finally, it would be inter-
esting to investigate how the periodic structures high-
lighted in this Letter actually develop in the cortex, and
subsequently influence the development of other cortical
structures. Perhaps such processes lead to a match between
the critical wavelength 2�=kc of cortical activity patterns
088101-4
with the lattice spacing L through the self-consistent gen-
eration of the even and odd patterns shown in Fig. 4.
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