Pressure-Induced Transition from Localized Electron Toward Band Antiferromagnetism in LaMnO₃

J.-S. Zhou and J. B. Goodenough

Texas Materials Institute, ETC 9.102, University of Texas at Austin, Austin, Texas 78712 (Received 9 January 2002; published 2 August 2002)

The temperature dependence of the ac susceptibility under pressure has been used to track the Néel temperature T_N of the Mott insulators LaMnO₃, CaMnO₃, and YCrO₃. Bloch's rule relating T_N to volume V, viz., $\alpha = d \log T_N / d \log V = -3.3$, is obeyed in YCrO₃ and CaMnO₃; it fails in LaMnO₃. This breakdown is interpreted to be due to a sharp increase in the factor $[U^{-1} + (2\Delta)^{-1}]$ entering the superexchange perturbation formula. A first-order change at 7 kbar indicates that the transition from localized-electron to band magnetism is not smooth.

DOI: 10.1103/PhysRevLett.89.087201

PACS numbers: 75.30.Et, 71.27.+a, 71.28.+d, 71.70.Gm

A cooperative Jahn-Teller distortion of the high-spin $Mn(III)O_{6/2}$ octahedra below $T_{JT} = 700$ K makes LaMnO₃ an insulator with type-A antiferromagnetic order below $T_N = 140$ K. On the other hand, our previous demonstration [1] of an insulator-conductive transition at T_{JT} in LaMnO₃ has indicated that the on-site correlation energy U_{σ} for the σ bonding *e* electron in this compound is not sufficiently large to prevent charge disproportionation at $T > T_{JT}$. Ahn and Millis [2] have subsequently argued that the superexchange perturbation formula may not be applicable in this small-*U* compound. In this Letter, we demonstrate that the spin-spin interactions approach the transition from localized-electron to band magnetism where the superexchange perturbation description breaks down under high pressure.

Bloch [3] studied the variation of T_N and volume V of numerous antiferromagnetic insulators and found the general relationship $\alpha = d \log T_{\rm N} / d \log V = -3.3$. In the localized-electron limit where the superexchange perturbation approach is applicable, theory gives $T_{\rm N} \sim$ $b^{2}[U^{-1} + (2\Delta)^{-1}]$, where the metal-metal electron-transfer energy integral in an AMO₃ perovskite, $b \approx (b^{ca})^2 / \Delta$, contains the anion-cation back-transfer integral b^{ca} and the O-2*p* to lowest *M*-3*d* charge-transfer gap Δ . The first term in the expression for $T_{\rm N}$ is the Anderson superexchange term; the second involves a two-electron transfer from an O²⁻ ion, one to each of the two interacting cations on opposite sides of it. A theoretical rationalization of the Bloch rule comes from calculations [4,5] of the variation of the overlap integral in b^{ca} with the cation-anion bond length r; it varies as r^{-n} with a calculated n = 2.5-3, which makes $T_{\rm N} \sim r^{-10} - V^{-3.3}$ and therefore $\alpha = -3.3$ if U and Δ remain independent of r or V. The perturbation description for the superexchange spin-spin interaction should break down on the approach to crossover from localized to itinerant electronic behavior of a Mott-Hubbard insulator. However, experimental examples of crossover are rare. Aronson *et al.* [6] obtained an $\alpha =$ $d \log J/d \log r < 10$ from a measurement of the pressure dependence of the exchange parameter J on one sample La₂CuO_{4+ δ} ($T_{\rm N} = 308$ K) and high-pressure structural data on another sample of La₂CuO_{4+ δ} [7]. The smaller α than expected from the Bloch rule led Aronson *et al.* to conclude that a nonperturbative calculation of the magnetic-exchange energy is needed for this compound. Although a subsequent measurement [8] on an La₂CuO₄ sample with $T_{\rm N} = 320$ K has shown a higher $d \log T_{\rm N}/dP$, it appears that antiferromagnetic La₂CuO₄ is at the crossover from localized to itinerant electronic behavior.

Single-crystal samples of LaMnO₃ and CaMnO₃ were grown in an infrared-heating image furnace from ceramic bars. A gas flow at 1 atm of argon and 2 atm oxygen pressure were used in the crystal growth of LaMnO₃ and CaMnO₃, respectively. The ceramic sample YCrO₃ was synthesized by solid-state reaction. All samples were single-phase to x-ray powder diffraction and are oxygen stoichiometric to within 0.1% by measurement of thermoelectric power. The dc magnetization of these samples was obtained with a SQUID magnetometer; the ac susceptibility under pressure was measured in a self-clamped Be-Cu cylinder with internal primary/secondary coils and silicone oil as the pressure medium. The primary coil was powered by a 5 kHz ac current that generated a magnetic field of about 4 Oe at the sample. All measurements made under pressure used the same coils. The pressure inside the pressure cell was monitored with a manganin pressure manometer. The labeled pressures in the figures are those measured at $T_{\rm N}$.

Figure 1 for YCrO₃ shows the dc magnetization in a field H = 35 Oe and the ac susceptibility at ambient pressure. The sharp peak in the ac susceptibility $\chi(T)$ at T_N should not be taken as evidence of spin-glass behavior since the typical features in the temperature dependence of the zero-field-cooled and field-cooled dc magnetization are lacking. We use the peak in $\chi(T)$ to monitor the pressure dependence of T_N . Pressure does not change the antiferromagnetic ordering in YCrO₃ (*G* type), CaMnO₃ (*G* type), and LaMnO₃ (*A* type), but it increases the transition temperature T_N as shown in Fig. 2. A broadening of the $\chi(T)$ peak is greater in the polycrystalline YCrO₃ sample than in the

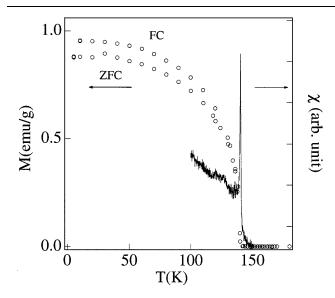


FIG. 1. Temperature dependence of the dc magnetization at H = 35 Oe together with $\chi_{ac}(T)$ under ambient pressure for YCrO₃.

single-crystal samples CaMnO₃ and LaMnO₃. The slight broadening of the peaks in the single-crystal samples may be caused by a nonhydrostatic pressure, but the abrupt change in the peak profile near 7 kbar in LaMnO₃ is intrinsic. As can be seen in Fig. 3, which shows the pressure dependences of $T_{\rm N}$ for the three samples, $T_{\rm N}$ varies linearly with P over the entire pressure range for YCrO₃ and CaMnO₃, but only in the range P > 7 kbar for LaMnO₃. Moreover, a close examination of the $\chi(T)$ peaks for LaMnO₃ near 7 kbar shows the existence of two peaks, indicating a two-phase region characteristic of a first-order phase change at 7 kbar. A $dT_N/dP = 0.34$ K/kbar for CaMnO₃ and 0.30 K/kbar for YCrO₃ obtained from Fig. 3 are a little smaller than the respective 0.41 K/kbar and 0.38 K/kbar values previously reported [9]. This difference may be attributed to such factors as a smaller pressure range P < 8 kbar, fewer data points, and a somewhat lower quality polycrystalline CaMnO₃ sample in the earlier work. To our knowledge, the pressure dependence of $T_{\rm N}$ in LaMnO₃ has not been previously measured. In contrast to CaMnO₃ and YCrO₃, the curve of T_N versus P for LaMnO₃ is not only nonlinear below 7 kbar with an abrupt change in $dT_{\rm N}/dP$ at the first-order phase change at 7 kbar; it also shows a high slope $dT_{\rm N}/dP = 0.55$ K/kbar at pressures P > 7 kbar.

The Mn(IV) and Cr(III) ions of CaMnO₃ and YCrO₃ each have t^3e^0 cubic-field *d*-electron configurations, which leads to isotropic t^3 -O- t^3 antiferromagnetic interactions and *G*-type antiferromagnetic order. The effective U_{π} for these compounds contains an intra-atomic exchange energy Δ_{ex} , which makes it larger than 3 eV. Qualitatively, the $dT_N/dP > 0$ found for YCrO₃ and CaMnO₃ fits the behavior of localized t^3 configurations with superexchange spin-spin interactions [9].

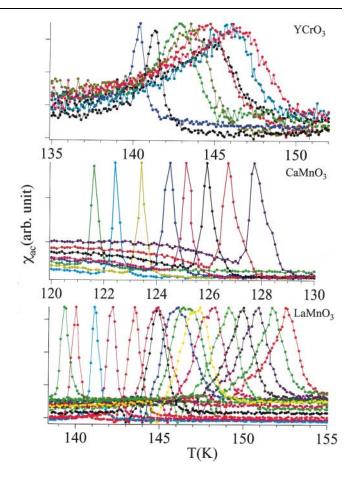


FIG. 2 (color). Temperature dependence of the ac susceptibility χ for LaMnO₃, CaMnO₃, and YCrO₃ under different pressures. The pressure values measured at the temperature of maximum $\chi(T)$, which corresponds to T_N , can be read from Fig. 3.

The unusual pressure dependence of $T_{\rm N}$ found in LaMnO₃ might originate in the behavior of the e electron of the Mn(III) : t^3e^1 manifold. A cooperative Jahn-Teller distortion orders the e electrons into the (001) planes where they give rise to ferromagnetic interactions, and the A-type antiferromagnetic order is due to the t^3 -O- t^3 interactions between ferromagnetic (001) planes [10]. The cooperative ordering of the occupied e orbitals into the (001) planes has been shown by neutron-diffraction made under pressure [11] to remain stable to 70 kbar; the A-type magnetic order is retained over the pressure range of this study. Application of hydrostatic pressure on the orthorhombic *Pbnm* perovskite could change the $(180^{\circ} - \phi)$ Mn-O-Mn bond angles. Boekema et al. [12] have shown a linear dependence between $T_{\rm N}$ and $\cos^2\theta$ as predicted from superexchange theory, where the angle $\theta = (180^\circ - \phi)$ is changed by chemical pressure, i.e., by altering the tolerance factor through changing the mean radius of the A cation of AMO_3 perovskites. In Sr_{1-x}Ca_xMnO₃, a $dT_{\rm N}/d\langle\cos^2\theta\rangle = 587$ K [13], in RFeO₃ (R = rare earth element) a $dT_{\rm N}/d\langle\cos^2\theta\rangle = 479$ K [14], and in RMnO₃ a

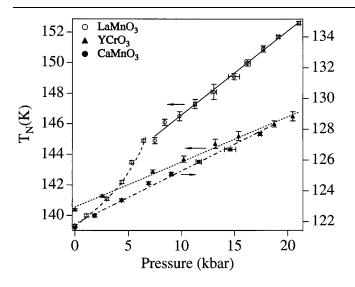


FIG. 3. Pressure dependence of the Néel temperature for LaMnO₃, CaMnO₃, and YCrO₃. Linear fittings have been made for CaMnO₃, YCrO₃, and LaMnO₃ at P > 7 kbar.

 $dT_{\rm N}/d\langle\cos^2\theta\rangle = 890$ K [13] have been found. In order to test whether the pressure dependence of $T_{\rm N}$ in LaMnO₃ can be described by superexchange perturbation theory, it is necessary to turn to Bloch's rule.

The double log plot of T_N versus V of Fig. 4 was obtained with the aid of neutron-diffraction data [11] taken on an LaMnO₃ sample of similar quality to that on which

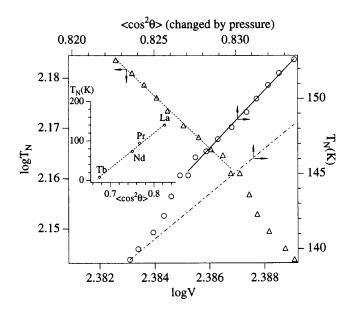


FIG. 4. Double log plot of the Néel temperature versus the volume and the $\langle \cos^2 \theta \rangle$ dependence of T_N for LaMnO₃. The dashed line is a linear fit of the curve of $\log T_N$ versus $\log V$, which gives an $\alpha_B = -5.3$. The dot-dashed line with a slope $dT_N/d\langle \cos^2 \theta \rangle = 890$ is taken from the curve of T_N vs $\langle \cos^2 \theta \rangle$ obtained by chemical substitution shown as an inset after Ref. [13]. The solid line with a slope $dT_N/d\langle \cos^2 \theta \rangle = 1148$ is a linear fit to the curve of T_N versus $\langle \cos^2 \theta \rangle$ changed by pressure.

we measured T_N versus *P*. A linear fit applies in the pressure range P > 7 kbar; it gives an $\alpha = -5.1$, which is much higher in magnitude than the $\alpha = -3.3$ expected from Bloch's rule. A large $|\alpha|$ indicates either T_N or the volume *V* has an unusual pressure dependence. High-pressure neutron-diffraction shows a compressibility $\kappa =$ -0.70×10^{-6} /bar for LaMnO₃, which is in line with K = -0.68×10^{-6} /bar obtained by Bloch on many antiferromagnetic insulators [3]. Therefore we may conclude that the anomalously large magnitude of α in LaMnO₃ is due to an unusually large pressure dependence of T_N . The data for LaMnO₃ together with those for CaMnO₃ and YCrO₃ are listed in Table I for comparison.

The pressure dependence of the overlap integral b^{ca} , i.e., $db^{\rm ca}/dP \sim \kappa/V$, can be obtained from the calculation $b^{ca} \sim r^{-n}$ (n = 2.5-3) [4,5]. Since κ for LaMnO₃ is not anomalous, we conclude that the deviation from Bloch's rule in LaMnO₃ with an $|\alpha| > 3.3$ is due to the factor $[U^{-1} + (2\Delta)^{-1}]$ in the superexchange perturbation expression; this factor increases with the bandwidth in LaMnO₃. On the approach to crossover from localized-electron to band magnetism, we can expect U to decrease sharply with increasing W as a result of a feedback-augmented screening of U until a first-order collapse occurs at a critical bandwidth where the equilibrium M-O bond length has a double-well potential. The phase with nonlinear dT_N/dP below 7 kbar can be assigned to a region where the factor $[U^{-1} + (2\Delta)^{-1}]$ increases with pressure. A narrow twophase region is observed in the interval $7 \le P \le 10$ kbar, and the high-pressure phase has a constant $dT_{\rm N}/dP$. Preliminary data at a pressure a little over the limit of the Be-Cu chamber suggests another two-phase region associated with a second first-order transition. The high- $T_{\rm N}$ phase does not yet contain long-range-itinerant electrons in the (001) planes, but it may contain molecular orbitals within Mn-O-Mn bonds.

The fact that the magnetic-exchange interactions in LaMnO₃ are anisotropic, whereas those of CaMnO₃ and YCrO₃ are isotropic, might be considered the origin of the unusually large $|\alpha|$. We note that the ferromagnetic inplane interactions do not compete with the antiferromagnetic interactions between planes, and that decreasing the Mn-O-Mn bond angle θ with substitutions of smaller lanthanides for La gives the $T_N \sim \langle \cos^2 \rangle \theta$ dependence, Fig. 4, anticipated by the perturbation theory. Application of hydrostatic pressure on LaMnO₃ increases the angles θ monotonically [11]. Therefore, pressure plays the same role as chemical substitution. However, as shown in Fig. 4, the relation between T_N and $\langle \cos^2 \theta \rangle$ deviates dramatically from that of $T_N \sim \langle \cos^2 \theta \rangle$ as $\langle \cos^2 \theta \rangle$ has a much greater slope under a pressure P > 7 kbar.

In contrast to LaMnO₃, YCrO₃ obeys the Bloch rule as expected for a localized-electron antiferromagnet with a $[U^{-1} + (2\Delta)^{-1}]$ that varies little with pressure in the pressure range studied. CaMnO₃ appears to approach the

TABLE I. The Bloch parameter, compressibility, and pressure dependence of $T_{\rm N}$.

	$ \alpha = d(\log T_{\rm N})/d(\log V)^{\rm a}$	$ \mathbf{K} = (1/V)dV/dP \text{ (bar}^{-1})$	$(1/T_{\rm N})dT_{\rm N}/dP$ (bar ⁻¹)
LaMnO ₃	5.3	$0.70 imes 10^{-6c} \ 0.68 imes 10^{-6d} \ 0.68 imes 10^{-6d}$	3.9×10^{-6}
CaMnO ₃	3.8 ^b		2.7×10^{-6}
YCrO ₃	3.0 ^b		2.1×10^{-6}

 $|\alpha| \approx 3.3$ in Bloch's rule.

 ${}^{b}\alpha$ is calculated by using K = 0.68×10^{-6} . ^cMeasured result of LaMnO₃.

^dThe compressibility found in magnetic insulators.

threshold for breakdown of the assumption $[U^{-1} +$ $(2\Delta)^{-1} \approx \text{const}$ because the small Δ in this compound may vary with pressure. A $dT_N/dP < 0$ found for the insulator CaCrO₃ was interpreted to locate this perovskite in the regime of band antiferromagnetism since SrCrO₃ is a Pauli paramagnetic metal [15]. We therefore tentatively place these compounds in the schematic plot of exchange energy J versus bandwidth W shown in Fig. 5. As the twophase region is approached in LaMnO₃, a feedbackenhanced decrease of U_{σ} with increasing W causes the Bloch rule and the perturbation method to break down. The transition from localized to itinerant electronic behavior appears to proceed in LaMnO₃ by at least one intermediate step.

In conclusion, the smaller U in LaMnO₃ than U_{π} in CaMnO₃ and YCrO₃ makes LaMnO₃ a promising candidate for exploration of the breakdown of the superexchange perturbation theory. The Bloch rule for localizedelectron antiferromagnetism, viz., $\alpha = d \log T_{\rm N}/d \log V \approx$ -3.3, provides a test of the application of the superexchange perturbation method and of how it breaks down. YCrO₃ was found to obey the Bloch rule; CaMnO₃ did also, but it appears to approach the limit where the factor $[U^{-1} + (2\Delta)^{-1}]$ of the perturbation theory can be assumed to be independent of pressure. By comparison, LaMnO₃ has an unusually large value of dT_N/dP that has little to do with either the compressibility or the cooperative Jahn-

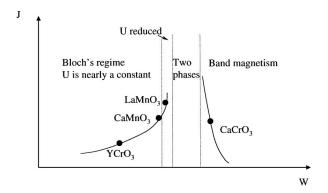


FIG. 5. A schematic diagram of the Heisenberg magneticexchange energy J versus bandwidth W at the crossover from localized-electron to the band magnetism.

Teller distortion. A nonlinear behavior of α in the range P < 7 kbar and a first-order phase change at $P \approx 7$ kbar is followed for P > 7 kbar by an $|\alpha| = 5.3$, which is significantly larger than the Bloch-rule value. This behavior is consistent with a breakdown of the superexchange perturbation method as a result of a dramatic decrease in U with pressure, a decrease resulting from a feedback enhancement of the screening of the on-site electron-electron Coulomb energy U as the transition from localized-electron to band ferromagnetism is approached.

We acknowledge the financial support of the NSF (DMR0132282), the TCSUH of Houston, Texas, and the Robert A. Welch Foundation of Houston, Texas.

- [1] J.-S. Zhou and J.B. Goodenough, Phys. Rev. B 60, R15002 (1998).
- [2] K.H. Ahn and A.J. Millis, Phys. Rev. B 64, 115103 (2001).
- [3] D. Bloch, J. Phys. Chem. Solids 27, 881 (1966).
- [4] K.N. Shrivastava and V. Jaccarino, Phys. Rev. B 13, 299 (1976).
- [5] D.W. Smith, J. Chem. Phys. 50, 2784 (1969).
- [6] M.C. Aronson, S.B. Dierker, B.S. Dennis, S.-W. Cheong, and Z. Fisk, Phys. Rev. B 44, 4657 (1991).
- [7] M.J. Akhtart, C.R.A. Catlow, S.M. Clark, and W.M. Temmerman, J. Phys. C 21, L917 (1988).
- [8] V. Doroshev, V. Krivoruchko, M. Savosta, A. Shestakov, and T. Tarasenko, J. Magn. Magn. Mater. 157/158, 669 (1996).
- [9] N. Menyuk, J.A. Kafalas, K. Dwight, and J.B. Goodenough, J. Appl. Phys. 40, 1324 (1969).
- [10] J.B. Goodenough, Phys. Rev. 100, 564 (1955).
- [11] L. Pinsard-Gaudart, J. Rodriguez-Carvajal, A. Daoud-Aladine, I. Goncharenko, M. Medarde, RI. Smith, and A. Revcolevschi, Phys. Rev. B 64, 064426 (2001).
- [12] C. Boekema, F. Van Der Woude, and G. A. Sawatzky, Int. J. Magn. 3, 341 (1972).
- [13] O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, D.E. Brown, R. Kruk, P. Prior, B. Pyles, and J. D. Jorgensen, Phys. Rev. B 64, 134412 (2001).
- [14] D. Treves, M. Eibschutz, and P. Coppens, Phys. Lett. 18, 216 (1966).
- [15] J.B. Goodenough, J.M. Longo, and J.A. Kafalas, Mater. Res. Bull. 3, 471 (1968).