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Small Cosmological Constant from the QCD Trace Anomaly?
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According to recent astrophysical observations the large scale mean pressure of our present Universe is
negative suggesting a positive cosmological constant-like term. The issue of whether nonperturbative
effects of self-interacting quantum fields in curved space-times may yield a significant contribution is
addressed. Focusing on the trace anomaly of quantum chromodynamics, a preliminary estimate of the
expected order of magnitude yields a remarkable coincidence with the empirical data, indicating the
potential relevance of this effect.
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equations (3) in the following. Its dynamics are governed
by the well-known Lagrangian density

describes the scale dependence � � �@g=@� of the
renormalized coupling g��� and reflects the dynamical
Recent measurements of the cosmic microwave back-
ground [1] suggest that the large scale structure of our
Universe is quite accurately described by the conformally
flat Friedmann-Robertson-Walker (FRW) metric

ds2 � dt2 ��2�t�dr2 � �2����d�2 � dr2�; (1)

with t denoting the proper (comoving wristwatch) time and
� the conformal time, respectively. The temporal variation
of the scale factor � inducing the cosmological redshift is
represented by the Hubble parameter

H �
1

�

d�
dt

� 10�10 yr�1: (2)

Inserting the FRW metric in Eq. (1) into the Einstein
equations (with the cosmological constant �)

R�	 �
1

2
g�	R � �8
GNhT̂T�	i � g�	��ren; (3)

the aforementioned observations and supernova [2] data
consistently yield the following conclusions: the 00 com-
ponent of the right-hand side (r.h.s.) of Eq. (3) equals (at
least approximately) the critical density % � %crit and the
spatial ii components—associated with the pressure p—
are negative: p=%crit � �2=3. As a result the Universe is
presently undergoing an accelerated expansion as approxi-
mately described by the de Sitter metric ��t� � expfHtg.

A negative pressure together with a positive energy
density necessarily implies a nonvanishing trace of the
energy-momentum tensor T�	. Since T�	 can be derived
via the variation of the action A with respect to the metric
g�	, i.e., T�	 � 2��g��1=2�A=�g�	, its trace corre-
sponds to the change of A under the conformal trans-
formations g�	�x� ! �2�x�g�	�x� by virtue of Euler’s
law: T�� � ����g��1=2�A=��; see, e.g., [3].

Let us focus on the contribution of the SU(3)-color
gauge field theory of QCD to the r.h.s. of the Einstein
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L � �
1

4
Ga
�	G

�	
a � �  �i��@� � gTa�

�Aa� �m� ;

(4)

with Ga
�	 � @�A

a
	 � @	A

a
� � gfa bcA

b
�A

c
	 being the

gluonic field strength tensor. Here fa bc denote the SU(3)
structure constants, Ta denote its fundamental generators,
and g is the strong coupling. For simplicity we drop the
ghost fields as well as the gauge fixing terms and consider
only one single flavor, i.e., quark species  . The remaining
electroweak sector of the standard model is discussed at the
end of this Letter.

On the classical level all gauge field theories as de-
scribed by Eq. (4) are conformally invariant (for m � 0).
According to the above arguments this feature implies a
vanishing trace of the classical energy-momentum tensor.
Turning to the quantum field theoretical description the
situation becomes more complicated. In the first place, the
naive expectation value of the operator-valued energy-
momentum tensor diverges due to the infinite zero-point
energy. In order to renormalize this singularity by an
appropriate counterterm one has to interpret the cosmo-
logical constant � in Eq. (3) as a bare quantity [3].

After such a minimal subtraction procedure the trace of
the renormalized expectation value of the energy-momen-
tum tensor hT̂T�	iren vanishes (again assuming m � 0) for
free (g � 0) fields in flat (� � 1) space-times—but not in
the general case. This phenomenon is called the trace
anomaly and goes along with the dynamical breaking of
the conformal invariance of the classical theory in Eq. (4).
It has been calculated for two limiting cases: first, for self-
interacting quantum fields in flat (� � 1) space-times [4]
and, second, for free (g � 0) fields in curved space-times
[3]. In the first case one obtains [4]

hT̂T��iren �
��g�
2g

hĜGa
�	ĜG

�	
a iren � �1� �m�m h �   ̂ iren: (5)

The Callan-Symanzik or Gell-Mann–Low � function
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breaking of the conformal invariance of the classical theory
(dimensional transmutation). Similarly, the �m function
corresponds to the running of the renormalized mass.
The expectation values hĜGa

�	ĜG
�	
a iren and h �   ̂ iren occurring

in Eq. (5) represent the so-called gluonic and quark con-
densates, respectively; see, e.g., [5]. These inherently non-
perturbative quantities again reflect the dynamical
breaking of the classical scale invariance. Both are of great
experimental relevance and their values have been con-
firmed within several contexts; see, e.g., [5]. Since the
symmetry breaking scale �QCD is (for m � 0) the only
scale in the theory (4), it yields hĜGa

�	ĜG
�	
a iren � O��4QCD�

and h �   ̂ iren � O��3QCD�—at least for m� �QCD. As
is well known, the � function occurring in Eq. (5) can
be calculated within the framework of perturbation the-
ory, and it turns out to be negative. Consequently, it is
now commonly accepted (cf. [5]) that the QCD trace
anomaly gives rise to a negative energy density (since
hĜGa

�	ĜG
�	
a iren > 0 and h �   ̂ iren < 0) of the QCD vacuum

in the Minkowski space-time.
However, such a huge amount of negative energy density

of order O��4QCD� blatantly contravenes our observations.
This drastic and global violation of the (weak and domi-
nant) energy conditions (see, e.g., [3]) in the Minkowski
space-time goes along with a fundamental contradiction if
one includes gravity since the r.h.s. of the Einstein equa-
tions (3) associated with a flat space-time vanishes.

Consequently, regarding the Einstein equations (3), one
is led to absorb the aforementioned energy density by
renormalizing the cosmological constant �, in complete
analogy with the case of the zero-point energy (which
determines the divergent part of � only). In the same
manner as one adjusts the mass counterterm in the self-
energy renormalization of the electron, for example, one
has to fix the bare cosmological constant by demanding
that the r.h.s. of the Einstein equations (3) vanishes for the
Minkowski vacuum

�8
GNhT̂T�	i � g�	��Minkowski vacuumren � 0: (6)

On the other hand, a nontrivial geometry of the space-
time may also induce a nonvanishing trace—even for free
fields (second limiting case g � 0). In this case hT̂T��iren is
given by the sum of a bilinear form of the curvature tensor
(such as R�	R�	 or R2) and second derivatives of it
(�R); cf. [3]. For the free QCD field (with g � m � 0)
within the de Sitter space-time ��t� � expfHtg, for ex-
ample, one finds (�h � c � 1)

hT̂T��iren �
281

120
2
H4: (7)

In contrast to the contribution in Eq. (5), there is no reason
to absorb this term by renormalization of �. In view of
its potentially space-time dependent character such a pro-
cedure would be rather strange. However, here the associ-
081302-2
ated energy density is far too small to explain the
observations [1,2].

In summary, the (renormalized) expectation value of the
energy-momentum tensor acquires an anomalous trace for
self-interacting quantum fields in flat space-times (5) on
the one hand, as well as for free fields in curved space-
times (7) on the other hand. However, both effects taken
alone are not capable of explaining the negative pressure as
suggested by the observations [1,2]. But this is just what
one might expect, since realistic investigations have to
involve both contributions simultaneously, i.e., the (non-
perturbative) effects of self-interacting fields in curved
space-times. A rigorous derivation of the renormalized
expectation value of the energy-momentum tensor for
this scenario appears to be rather involved and is not the
aim of the present Letter. Here we give just a preliminary
estimate of the expected order of magnitude of the effect.
To this end we employ an adiabatic approximation (cf. [3])
by exploiting the huge difference of the involved time
scales. The cosmic evolution—governed by H—is ex-
tremely slow compared to the typical fluctuations of the
quantum field as determined by �QCD. Consequently the
adiabatic approximation is an expansion in the small pa-
rameter H=�QCD � O�10�40�. So the zeroth-order term is
the pure Minkowski (flat space-time) contribution, whereas
the first-order term represents the lowest correction in-
duced by the cosmic expansion.

In order to calculate the renormalized expectation value
of the energy-momentum tensor it is essential to specify
the correct vacuum state associated with our expanding
Universe; cf. [3]. We adopt the Schrödinger picture

d
dt

j!i � �iĤHFRW�t�j!i; (8)

where ĤHFRW�t� denotes the Hamilton operator, i.e., the
generator of the time evolution, with respect to the coor-
dinates �t; r� in Eq. (1). Within the adiabatic approxima-
tion, the explicitly time-dependent Hamiltonian ĤHFRW�t�
of an expanding universe can be related to the (time-
independent) Minkowski Hamiltonian ĤHMin via

ĤHFRW�t� � expf�i��t�ŜSgĤHMin expf�i��t�ŜSg; (9)

with ŜS being the generator for the spatial conformal trans-
formations gij ! �2gij in the Schrödinger picture. In
terms of a dynamically scaled state defined via j ~!!i �
expf�i��t�ŜSgj!i, the Schrödinger equation reads

d
dt

j ~!!i � �i�ĤHMin � _��ŜS�j ~!!i: (10)

Treating ĤH1 � � _��ŜS � O�H� as a perturbation and
switching to the interaction representation ŜS�t� �
expf�iĤHMintgŜS expf�iĤHMintg we may solve the above
equation in linear response, i.e., first-order adiabatic
expansion
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j ~!!i � j ~!!ini � i
Z 0

�1
dt _���t�ŜS�t�j ~!!ini �O�H2�: (11)

If we assume ��t� � �0 � expfHtg, it is reasonable to
take the Minkowski vacuum j0Mini with ĤHMinj0Mini � 0
as the initial condition j ~!!ini � j0Mini. The remaining time
integration yields the (retarded) inverse of the Minkowski
Hamiltonian ĤH�1

Min and hence we arrive at

j0FRWi � j0Mini � HĤH�1
MinŜSj0Mini �O�H2�: (12)

Therefore the adiabatic QCD vacuum j0FRWi of an expand-
ing universe is not the instantaneous ground state j0Mini of
ĤHFRW�t� or ĤHMin—it acquires corrections already in the
first order of the adiabatic expansion. Instead it is an
(approximate) eigenstate of the corrected Hamiltonian
ĤHMin �

_��ŜS (see, e.g., [3] for free fields).
The remaining question is, of course, whether the first-

order correction H ĤH�1
MinŜSj0Mini to the vacuum state entails

a first-order correction to the expectation value of T̂T�	. In
order to illustrate this point let us consider the simple
example of a time-dependent harmonic oscillator

ĤH�t� �
!

2��t�
�P̂P2 ��2�t�Q̂Q2�; (13)

where ! corresponds to �QCD. In examining the question
of whether the dynamical scale symmetry breakdown in
QCD can be modeled by such a simple quadratic potential
one might consider the CP�N � 1� or the O�N� +-models
[6]. These strongly interacting theories reproduce several
features of QCD, such as dynamical scale symmetry break-
down. They can be solved in the large N limit and in the
leading order they effectively behave as massive free fields.
After a normal mode decomposition one therefore indeed
obtains terms like the one above. For the Hamiltonian in
Eq. (13) a change of the scale factor ��t� as in Eq. (9) can
simply be generated by the squeezing operator

ŜS �
1

4
fP̂P; Q̂Qg �

i
4
��âay�2 � �âa�2�: (14)

Consequently, the expectation values of operators such as
Q̂Q2 or P̂P2 do not acquire a first-order correction. This result
can be transferred directly to free quantum fields: pitching
on a particular normal mode with the wavelength k the
conformal charge ŜS again acts like a squeezing operator
ŜS ! i�âayk âa

y
�k � âakâa�k�. As a result there is no first-order

correction to the expectation value of T̂T�	 for free (linear)
fields.

However, if we leave the free-field sector and take
interactions into account the situation may change: let us
consider the interaction Hamiltonian

ĤH int�t� � g
Z t

�1
dt0Gret�t� t0�fQ̂Q2�t�; Q̂Q2�t0�g; (15)

where Q̂Q�t� � Q̂Q cos�!t� � P̂P sin�!t� denotes the unper-
turbed time-dependent operator in the interaction picture.
081302-3
The retarded propagator Gret�t� t0� encodes the dynamics
of an intermediate (interaction) degree of freedom which
has been integrated out. Again such a term can be moti-
vated by the CP�N � 1� models: in the large N limit these
strongly interacting massless theories effectively transform
into massive fields obeying weak (i.e., next-to-leading
order in 1=N) long-range four-point interactions; cf. [6].

For general Green functions Gret�t� t0�, the operator in
Eq. (15) does entail a first-order correction. This can be
most easily verified by assuming g� 1 which allows for a
perturbative treatment.

In view of these considerations one might expect a first-
order contribution to hT̂T�	iren to be possible in the case of
QCD: since the classical as well as the free quantum field
in Eq. (4) are (to first order in H and for m � 0) confor-
mally invariant, their solutions would simply be scaled
during the expansion of the Universe—like the redshift
of the photon field. (This would actually happen if the
Universe were to expand very rapidly H � �QCD.)
However, the strong self-interaction on the quantum level
breaks the conformal invariance and introduces a fixed
scale �QCD leading to a positive pressure given by
Eq. (5). Within an expanding universe the balance of these
two tendencies, i.e., following the expansion on the one
hand and retaining the scale on the other hand, leads to a
displaced vacuum state (12).

Let us assume that a part of the positive vacuum pressure
in Eq. (5) can be explained by relatively localized (non-
perturbative) vacuum fluctuations (e.g., instantons [7] or
oscillons [8]) which repel each other (at least in average;
cf. [7]). Let us further assume that the dynamical break-
down of the scale symmetry is basically encoded by these
(nonperturbative) vacuum fluctuations, whereas their (re-
pulsive) interactions are adequately described by the free
(perturbative) and thus conformally invariant field equa-
tions. In this case their solutions would simply be scaled
during the cosmic expansion in contrast to the nonpertur-
bative fluctuations which retain their scale and hence are
not affected. Within an expanding universe, then, every
vacuum fluctuation ‘‘sees’’ all other vacuum fluctuations
‘‘redshifted,’’ i.e., their repulsion acquires a correction
proportional to HR, where R denotes their (mean) distance
(cf. [7]). Accordingly, the positive vacuum pressure in
Eq. (5) gets diminished by an amount of first order in H.

Based on this intuitive picture it appears plausible to
admit a correction to the expectation value of the energy-
momentum tensor within the FRW vacuum in Eq. (12)
which is linear in H. After the renormalization described
in Eq. (6), i.e., the subtraction of the Minkowski contribu-
tion, we therefore obtain

hT̂T�	i
FRW
ren � HhT̂T�	ĤH

�1
MinŜSi

Min
ren � H:c:�O�H2�

� O�H�3QCD�: (16)

Let us estimate the associated order of magnitude:
although �QCD depends on the renormalization scheme
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we may fix it approximately via �QCD � O�108 eV� �
O�1014 m�1�. The masses of the light quarks which
dominantly couple to the gluonic field are roughly of a
similar order of magnitude. The Hubble expansion parame-
ter H is about 10�26 m�1. Inserting the above values we
finally arrive at hT̂T�	iFRWren � O�1016 m�4� or hT̂T�	iFRWren �
O�10�29 g cm�3�. By inspection one finds that the deduced
order of magnitude nicely fits the empirical data %crit �
10�29 g cm�3. In view of the huge difference of the in-
volved scales [H=�QCD � O�10�40�] this remarkable co-
incidence seems to be almost too good to be just an
accident. At least it indicates the potential relevance of
the effect described in the present Letter with regard to the
interpretation of the astrophysical data [1,2].

It should be mentioned here that a pressure induced by
the expansion of our Universe with p / H generates a
cosmic evolution which differs from that with a true cos-
mological constant p � const: by inserting the FRW met-
ric (1) into the Einstein equations (3) one obtains the
Friedmann equation 3H2 � 8
GN%. Furthermore the
Einstein equations imply r�hT̂T�	iren � 0; i.e., d%=dt �
�3�%� p�H. Combining these two equalities and specify-
ing the pressure p one may determine the time evolution of
our Universe. Unfortunately the presently available data
(such as the Hubble parameter or the age of the Universe)
are not precise enough to distinguish the two cases (p / H
and p � const).

Of course one may ask whether the remaining electro-
weak sector of the standard model generates similar con-
tributions: typically (see, e.g., [5]) nonperturbative effects
(such as hĜGa

�	ĜG
�	
a iren and h �   ̂ iren) display a dependence

on the coupling of expf�8
2=g2g � expf�2
=.g. The
scale of the dynamical symmetry breaking �QCD obeys
a similar nonanalytical dependence on the coupling g.
Inserting .QED � 1=137 into the above expression one
obtains a suppression by an order of magnitude of
10�370. Hence the contributions arising from the dynami-
cal breaking of scale invariance can safely be neglected in
this case.

The remaining explicit breaking of the scale symmetry
induced by the Higgs field of course also generates con-
tributions to T̂T�	. However, the general structure of all
these terms is given by m2 h.̂.y.̂.iren and according to the
arguments after Eq. (14) they do not contribute to the first
order in H. Although the mixture of these terms caused by
interactions remains subject to further considerations, a
contribution of the electroweak sector in analogy to QCD
is not obvious.

In summary, the present Letter motivates a deeper ex-
amination of the vacuum of strongly interacting fields in
the gravitational background of our expanding Universe—
for the present epoch as well as for earlier stages; cf. [9].
These investigations might perhaps lead to a better under-
standing of some of the problems in cosmology without
necessarily invoking yet unknown low-energy fields, for
example, quintessence (see, e.g., [10]).
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