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Colloidal Dynamics on Disordered Substrates
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Using Langevin simulations, we examine driven colloids interacting with quenched disorder. For weak
substrates the colloids form an ordered state and depin elastically. For increasing substrate strength, we
find a sharp crossover to inhomogeneous depinning and a substantial increase in the depinning force,
analogous to the peak effect in superconductors. The velocity versus driving force curve shows criticality
at depinning, with a change in scaling exponent occurring at the order to disorder crossover. Upon
application of a sudden pulse of driving force, pronounced transients appear in the disordered regime
which are due to the formation of long-lived colloidal flow channels.
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Colloidal crystals are an ideal system in which to study
the general problem of ordering and dynamics in 2D [1-4],
since the particle size permits direct imaging of the particle
locations and motion. A considerable amount of work has
been conducted on the melting of 2D colloidal crystals in
the absence of a substrate [1,2]. In addition, a number of
experimental and theoretical studies have considered col-
loidal crystallization and melting in 2D systems with peri-
odic 1D [3] and 2D substrates [4,5], where a rich variety of
crystalline states can be stabilized.

Colloid crystals are also ideal for studying the ordering
and dynamics of an elastic media interacting with random
substrates, a problem that is relevant to a wide variety of
systems, such as superconducting vortices, Wigner crys-
tals, and charge density waves (CDWs). Open issues in-
clude the nature of the dynamical response to applied
forces, as well as whether an order to disorder transition
occurs as the strength of the random substrate increases.
Recently, Carpentier and Le Doussal have theoretically
investigated the effects of quenched disorder on the order
and melting of 2D lattices and find a sharp crossover from
the ordered Bragg glass (where defects are absent) to a
disordered or molten state [6]. They predict that the depin-
ning threshold increases at this crossover due to the soft-
ening of the lattice, which allows the particles to better
adjust to the substrate. A similar mechanism could account
for the peak effect observed in vortex matter in super-
conductors [7-12], in which the depinning threshold rises
dramatically when the applied magnetic field is increased.
In low temperature superconductors, where the fairly stiff
vortices can be considered as effectively 2D, recent small
angle neutron scattering experiments have shown that the
peak effect is associated with a sharp disordering or melt-
ing transition [13].

In addition to static properties, the dynamics of elastic
media interacting with quenched disorder in 2D is a topic
of intense study. In the disordered region, the driven system
may break up into pinned and flowing regions, as observed
in experiments [14] and simulations [15,16] of supercon-
ducting vortices. Conversely, for weak substrate disorder,
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the elastic media is defect free and undergoes elastic
depinning, in which the particles keep the same neighbors
as they move. Fisher predicted that elastic depinning would
show criticality [17] and that the velocity vs force curves
would scale as v = (f — f,)?, where f, is the depinning
threshold force. This scaling has been studied extensively
in 2D CDW systems where 8 = 2/3 [18,19]. It is, how-
ever, not known whether this exponent occurs in other
systems undergoing elastic flow. Another intriguing dy-
namical phenomenon is the pronounced transient behavior
exhibited by vortices under a sudden applied current pulse
at magnetic fields near the peak effect regime [9,10].
Because of surface barrier effects, it is not clear whether
these transient effects arise from the plasticity of the vortex
dynamics or from contamination of the vortex lattice by
disorder from the sample edges [12]. Recently, Pertsinidis
and Ling [5] have studied colloids in 2D driven by an
electric field and interacting with a disordered substrate.
They observe plastic depinning with filamentary or river-
like flow of colloids and a velocity-force curve scaling with
B = 2.2, as well as elastic depinning of an ordered colloi-
dal lattice with 8 around 0.5. Under a pulsed drive the
system shows very long time transients that fit to a
stretched exponential.

Motivated by the recent colloidal experiments as well as
the pulse drive experiments in vortex matter, we have
conducted Langevin simulations of colloidal particles in-
teracting via a Yukawa potential in 2D systems with ran-
dom disorder. In simulation, the strength of the disorder
can be carefully tuned, which is difficult to achieve in
experiments. In addition, the initial conditions of the col-
loidal arrangements are easily controlled, whereas in ex-
periments, defects generated in the colloidal lattice during
preparation may become frozen in by the disorder. We find
that for weak substrates the colloids form an ordered
triangular array which depins elastically without the gen-
eration of defects. For increased substrate strength, there is
a sharp crossover to a disordered phase where the colloids
depin plastically into riverlike structures. This crossover
is accompanied by a sharp increase in the depinning
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threshold, analogous to the peak effect phenomenon in
superconductors. We find scaling of the velocity vs applied
drive with an exponent of 8 = 0.67 in the elastic regime, in
agreement with studies in 2D CDWs. In the plastic regime
we find B = 1.94, close to the experimentally observed
value [5]. In the disordered region, long time transients that
fit to a stretched exponential occur in response to a sudden
applied drive pulse, as also observed in experiments.

The colloids are simulated using Langevin dynamics in
2D [2] and interact via a Yukawa or screened Coulomb
interaction potential V(r;;) = (Q?/Ir; — r;|) exp(—«lr; —
r;|). Here Q is the charge of the particles, 1/« is the
screening length, and r,;, is the position of particle i(j).
Length is measured in units of the lattice constant a, and
the screening length is k = 2/a,. The quenched disorder is
modeled as randomly placed parabolic traps with radius
r, < ag and a maximum force f,. The equation of motion
for colloid i is dr;/dt = f;; + £, + f; + f,. Here f;; =
- Zy;iViV(r,-J-) is the interaction force from the other
colloids, f, is the pinning force, f7 is a randomly fluctuat-
ing force due to thermal kicks, and £ is the force due to an
applied drive. We start the system at a temperature above
the melting temperature 7 > T,, and gradually cool to
T/T, = 0.4. The driving force is increased from zero by
small increments and the velocity is averaged for 5 X 10*
time steps at each increment, with typical simulations
running for 107 time steps. In this model we do not take
into account hydrodynamic effects or long-range attrac-
tions between colloids. This colloidal model differs from
vortex simulations in the form of the particle-particle
interaction. For vortices interacting logarithmically, the
shear modulus is much smaller than the compression mod-
ulus [20], making filamentary or plastic flow at depinning
likely. To our knowledge, no simulation of vortex matter in
2D has observed an order to disorder transition as a func-
tion of pinning strength.

In Fig. 1(a) we show the depinning force f. vs substrate
strength f, from a series of simulations. For f, < 0.18 the
depinning force increases as a power law, f, o« f,9*01,
To compare the depinning force to the order in the system,
in Fig. 1(b) we show the percentage of defects or non-
sixfold coordinated particles P, as calculated from a
Delaunay triangulation. This measure indicates that the
colloidal crystal is in an ordered state (P, = 0.0) for f, <
0.18 and that there is a crossover to a disordered state
(Pg # 0)at f, = 0.18. In Fig. 1(c) we show a representa-
tive Delaunay triangulation for the ordered state where
there are no defects but small distortions in the particle
positions can be seen, and in Fig. 1(d) we show the dis-
ordered state where defects are present. The crossover to
the disordered state coincides with a rapid increase in the
depinning force as seen in Fig. 1(a) and in the inset in
Fig. 1(a), which shows a peak in df./df, at the crossover.
This behavior is consistent with the recent experiments
in superconductors, which find an increase in the pinning
at the peak effect with a simultaneous disordering of the
lattice [13]. For f, > 0.2, the depinning scales as f. = f,,
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FIG. 1. (a) Depinning force f. vs pinning strength f,. Inset:
Corresponding df./df,. (b) Percentage of non-sixfold coordi-
nated colloids, P,. (c) Delaunay triangulation of colloid posi-
tions at depinning for f, = 0.12; (d) f, = 0.25. Filled circles
indicate non-sixfold coordinated particles.

as expected for the single particle pinning regime. The
sudden increase in the depinning force results from the
fact that the defected colloid lattice is much softer than the
ordered lattice, allowing the colloids to adjust their posi-
tions to accommodate to the optimal pinning sites. We have
also investigated this transition for different colloidal den-
sities and disorder strengths. For increasing T, the order to
disorder transition is shifted to lower values of f,. For
increasing system sizes, the order-disorder crossover shifts
only a small amount before saturating, while the sharpness
of the transition persists with increased system size.

It is beyond the scope of this Letter to determine whether
the order to disorder crossover is a first order transition.
Although the sharpness suggests a possible first order
transition, Carpentier and Le Doussal show that for 2D
systems with quenched disorder, a sharp disordering cross-
over, rather than transition, occurs [6]. In addition, a first
order transition is not expected since the Bragg glass in 2D
has been shown to have dislocations on large scales at all
temperatures. The distance between these dislocations can
be arbitrarily large [21].

In Fig. 2 we show that the order-disorder crossover
coincides with the onset of plastic flow above depinning.
In Fig. 2(b) the elastic colloid flow is shown for f, = 0.12
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FIG. 2. Colloid positions (black dots) and trajectories (lines)
for (a) plastic flow regime (f, = 0.25) and (b) elastic flow
regime (f, = 0.12).

above depinning (f;/f. = 1.1). Here each colloid keeps
the same neighbors as it moves. In Fig. 2(a) the inhomoge-
neous or plastic colloidal flow is shown for f;/f,. = 1.1 for
f» = 0.25. Here only a portion of the colloids are moving
at any one time, the colloid velocities are bimodally dis-
tributed, and the motion occurs in channels or rivers be-
tween pinned regions. In addition, the channels seen in
Fig. 2(a) are not static but change over time, so that any one
colloid is only temporarily trapped in a pinning site. These
features of the plastic flow are in agreement with observa-
tions in colloidal experiments [5] and in vortex simulations
of the strongly pinned regime [15,16]. Elastic depinning
of the colloids occurs through elastic flow similar to that
in Fig. 2(b).

In order to correlate the different types of flow observed
in Fig. 2 with properties of bulk measurements, we show in
Fig. 3 the scaling of the velocity vs driving force. For
elastic depinning in the ordered regime [Fig. 3(a)], v —
faisfittov = (f, — f.)B with 8 = 0.66 = 0.02, as illus-
trated in Fig. 3(b). These results are in good agreement
with theoretical predictions [18] and simulation results
[19] for elastic depinning of 2D CDWs. In contrast, in
driven 2D vortex matter, Bhattacharaya and Higgins [8]
found an exponent of 8 = 1.2 below the peak effect where
elastic flow is expected to occur. This may be due to the
effects of surface barriers disordering the lattice. Colloid
experiments on elastic depinning [5] find 8 < 1.0, with a
best fit to S = 0.5. We point out that for an infinite size
system, true elastic depinning is not expected since dis-
locations should appear at large scales [21]. In addition,
Coppersmith argued that rare pinning regions will lead to
phase slips or plasticity for 2D systems with random dis-
order [22]. Both the simulation and the experiments are at a
finite size, so in the elastic regime the distance between
dislocations may be larger than the system size. In
Figs. 3(c) and 3(d) the v — f; scaling for the plastic regime
shows B8 = 1.94 = 0.03, close to the value of 2.2 found in
the colloid experiments [5]. For larger system sizes, we
find that the scaling region is expanded but the exponent is
unchanged. The question of whether there is a universal
exponent for plastic depinning remains open. Other studies
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FIG. 3. Velocity v vs applied drive f, for (a) elastic regime
f, = 0.08. (b) Log-log plot of v vs (f; — f.) from (a); line
indicates fit to 8 = 2/3. (¢) v vs f, for plastic depinning f =
0.25. (d) Log-log plot of v vs (f; — f.) from (c); line indicates
fitto B = 1.94.

in the plastic flow regime found 8 = 2.0 for electron flow

simulations in metallic dots [23] and 8 = 2.22 for vortex
flow in Josephson-junction arrays.

The velocity-force curves for both regimes are nonhys-
teretic. It is interesting to compare our results to experi-
mental results for CDWs that in some cases find [24]
discontinuous and hysteretic depinning transitions, which
are believed to be due to phase slips or plasticity. Similar
behavior appears in vortex simulations with periodic pin-
ning and an incommensurate vortex lattice [25]. It would
be very interesting to investigate the colloidal depinning
for systems with periodic or anisotropic pinning to shed
light on the type of dynamics that occurs during sharp and
hysteretic depinning.

In Fig. 4 we show the response of colloids prepared in an
ordered state to the application of a sudden pulse of driving
force of different strengths in the plastic flow regime. Since
the pulse strength is chosen to be below the depinning
threshold value f,, the initial colloid velocity is high and
then gradually decreases. We find that a simple functional
form cannot be fit to the curves. Instead, we use a stretched
exponential fit as performed in experiments [5]: v(f) =
voexp[—(¢/1y)*] + v,. The values of 7, and o depend on
the magnitude of the drive. For the parameters investigated
here, « falls between 0.08 and 0.4, in agreement with
experiment. A similar stretched exponential decay was
also found in vortex matter for the transient response to
pulses [10]. We find that, in the long time limit, the colloid
flow occurs only through a few long-lived channels. In the
elastic regime, the decay of v is much faster and fits to an
initial pure exponential with the velocities going to zero. In
the elastic regime, the colloids move less than a lattice
constant after a pulse is applied, whereas in the plastic
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FIG. 4 (color online). Average transient velocity per colloid
V/N, vs time in the disordered region for f,, = 0.25 at a sudden
applied drive of (from top to bottom) f,/f. = 1.2, 1.0, 0.8, 0.6,
and 0.3. A stretched exponential A exp[ —(#/1,)%] + v, can be fit
to all the curves. Bottom curve: a stretched exponential fit for the
falfe = 0.3 case, with V/N, = 0.0089 exp[ —(¢/400)'] + 0.

regime, colloids in the moving channels can travel the
entire length of the system. For increased system sizes,
the transient times are enhanced in the plastic flow regime
but are unchanged in the elastic regime. The long-lived
transients in the plastic regime are responsible for the very
slow velocity-force sweep necessary to measure an accu-
rate depinning threshold. This sweep-rate dependence is
also consistent with the experimentally observed sweep-
rate dependent critical currents in the peak regime [11],
where slow rates produce larger measured critical currents.

To summarize, we investigated the behavior of 2D col-
loids interacting with random disorder using Langevin
simulations. For weak disorder the colloids form an or-
dered lattice which depins elastically and shows critical
scaling in the velocity vs force curves, with 8 = 0.67, in
agreement with studies of 2D CDWs. For increasing dis-
order strength, we find a sharp crossover to a disordered
state, accompanied by a sharp increase in the depinning
force, analogous to the peak effect observed for vortex
matter in superconductors. In the disordered region, the
colloids depin inhomogeneously into fluctuating channels
and the v — f curve scaling gives 8 = 1.94, in agreement
with experiments. In the disordered flow regime, pro-
nounced transients occur in response to a sudden pulse,
with the late time dynamics determined by a few long-lived
channels. Our results are in good agreement with recent
experiments.
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