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Rippling Patterns in Aggregates of Myxobacteria Arise from Cell-Cell Collisions
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Experiments with myxobacterial aggregates reveal standing waves called rippling patterns. Here these
structures are modeled with a simple discrete model based on the interplay between migration and
collisions of cells. Head-to-head collisions of cells result in cell reversals. To correctly reproduce the
rippling patterns, a refractory phase after each cell reversal has to be assumed, during which further
reversal is prohibited. The duration of this phase determines the wavelength and period of the ripple
patterns as well as the reversal frequency of single cells.
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FIG. 1. (a) Snapshot from a rippling sequence in myxobacteria
taken from a time-lapse movie. White bar: 300 �m. (b) Space-
wave velocities between 2 and 11 �mmin , and temporal
periods between 10 and 20 min. Typical cell lengths vary

time plot of the density profile along the white line in (a).
Wavelength is 105 �m, temporal period is 10 min.
Introduction.—Pattern formation in aggregates of bac-
teria and amoebae is a widely observed phenomenon [1].
Complex colonial patterns of spots, stripes, and rings are
produced by E. coli [2]. Bacillus subtilis exhibits branching
patterns during colonial growth [3]. Two- and three-dimen-
sional circular waves and spirals have been observed dur-
ing aggregation of Dictyostelium discoideum [4–7], often
closely resembling patterns in chemical reactions [8].
These patterns are typically modeled with continuous
reaction-diffusion equations describing the spatiotemporal
evolution of the cell density and concentrations of chemo-
attractants and nutrients, e.g., for Dictyostelium discoi-
deum [1,9,10] and E. coli [11,12]. An alternative
approach uses discrete models that describe the motion
of individual cells and swarm formation [13–15].
Myxobacteria [16,17] provide one of the most intriguing
examples for morphogenesis and pattern formation. As
long as there is a sufficient food supply, vegetative cells
grow and divide. But when nutrients run short, bacteria
aggregate and finally build a multicellular structure, the
fruiting body.

Myxobacterial rippling.—Fruiting body formation is
often preceded by a periodic pattern originally classified
as oscillatory waves and later named rippling. Rippling is
found in myxobacteria such as Myxococcus xanthus
[18–20]. An experimental illustration of the rippling phe-
nomenon is shown in Fig. 1(a). Bacteria organize into
equally spaced ridges (dark regions) that are separated by
regions with low cell density (light regions). We examine
the temporal dynamics of the density profile along a one-
dimensional cut indicated by the white line in Fig. 1(a).
The resulting space-time plot reveals a periodically oscil-
lating standing wave pattern [Fig. 1(b)]. To model the
formation of rippling patterns is a significant first step in
the understanding of the life cycle of myxobacteria.
Several experimental studies [18–20] report periodic rip-
pling patterns with wavelengths between 45 and 90 �m,
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between 5 and 10 �m, so that the rippling wavelength
corresponds to 10–20 cell lengths. In addition, single cells
have been found to move unidirectionally with the ripple
waves in a typical back and forth manner; they reverse their
direction of motion with a mean reversal frequency of
about 0:1 reversalsmin�1.

Model.—In the following, we present a discrete model
for the formation of ripple patterns which is based on the
dynamics of single cells. Our model is defined on a fixed
square lattice in the x-y plane and assumes discrete space
coordinates, analogous to cellular automaton models. The
discrete z coordinate describes the number of cells piled
up on top of each other in a given lattice point in the x-y
plane [Fig. 2(a)]. The spatial lattice constants are chosen
according to the size of a bacterial cell (�6 �m) in the x
and (�1 �m) in the y and z directions.
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FIG. 2. (a) Exemplary configuration of the model; the cell
orientation is indicated by arrows. (b) The interaction neighbor-
hood is a five nodes cross in the y-z plane at that x position the
cell is directed to (here the cell orientation is the �x direction).
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The basic rules of the model are derived from the
experimental results by Sager and Kaiser [20]: Within
the rippling phase, cells are found to move on linear paths
parallel to each other about a distance of one wavelength.
When two opposite moving cells collide head-on, they
reverse their gliding direction due to the exchange of a
small, membrane-associated protein called C-factor.
Furthermore, we assume a refractory phase of duration �
in which cells cannot respond to C-signal, and reversal is
prohibited. � is the most relevant control parameter.

The number of cells is constant (absence of cell repli-
cation and death); i.e., the average height (average number
of cells per lattice site) �nn is a second parameter in the
model. All cells are assumed identical with respect to
length, velocity, and duration of the refractory phase.
This simplifies the analysis considerably. We have, how-
ever, tested that the results presented below are robust to
small variations in duration of refractory phases and veloc-
ities that are expected in the experimental system. Large
variations of any of these quantities, however, prevent
formation of the rippling patterns.

Because rippling cells mainly move on linear paths, we
studied also a two-dimensional (2D) model in the x-z
plane. Nevertheless, the three-dimensional (3D) case is
closer to the experimental situation. In the 3D model,
movement of individual bacteria is restricted to sheets
with a fixed y coordinate, assuming that alignment of cells
takes place before the onset of rippling. The coupling in the
y direction is solely due to interaction. A single cell is thus
described by a three-dimensional space coordinate �x; y; z�
and an orientation variable 
 2 f�1�left�; 1�right�g refer-
ring to the gliding direction.

Cells interact solely via head-on collisions; i.e., cells
only sense counterpropagating cells in a certain interaction
neighborhood. When a sensitive cell collides head-on with
other cells (the meaning of collisions will be specified
below), it reverses its gliding direction and is temporarily
refractory. The sensitivity of a bacterium to C-factor is
described by a clock variable � which measures the time
since the last reversal; thus a cell with � < � is insensitive
to C-factor.

The temporal update of the model consists of a migra-
tion and an interaction step and is performed in discrete
steps; the step size reflects the time a cell needs to advance
by one cell length ( � 1 min). In the asynchronous migra-
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tion step, cells move according to their orientation to the
neighboring site in the x direction. If this site is already
occupied, the cell pushes its way between cells of the next
column and slips beneath or above the blocking cell with
equal probability. Cells are assumed to rest with small
probabilities p � 0:05. Interaction takes place simultane-
ously; in 3D every sensitive cell (� 	 �) checks a neigh-
borhood of five nodes depending on its orientation 

[Fig. 2(b)]. If a cell encounters at least one cell with
opposite orientation in this neighborhood in its direc-
tion of motion (collision), the cell reverses orientation
(
 ! �
) and will be refractory for �� 1 time steps. In
the 2D model, sensitive cells reverse only upon head-on
collision with cells at the same level (one-node interaction
neighborhood). Insensitive refractory cells cannot reverse
due to collisions, but still can cause the reversal of other
sensitive cells. Random initial conditions and periodic
boundary conditions are used throughout the simulations.

Simulation results.—We performed systematic simula-
tions by varying the two model parameters � and �nn. The
results depend only weakly on the number of cells in the
aggregate; variations of the average number �nn of cells per
lattice point between 2 and 10 do not produce significant
changes; results presented here are for �nn � 3. The duration
of the refractory phase � is the decisive quantity for pattern
formation. If there is no refractory period, all collisions
lead to reversal of both involved cells and do not change
the densities of left- and right-moving cells. If a refractory
cell and a sensitive cell collide, only the latter will reverse
and both cells move in the same direction. This provides
the microscopic symmetry breaking which is necessary
(but not sufficient) for the emergence of the macroscopic
rippling patterns.

Our simulations show that refractory times below a
certain threshold do not lead to a visible rippling pattern
[see Figs. 3(a) and 3(b)]. If the refractory phase is longer
than 2 min, we can, however, extract a typical length scale
by spatial Fourier transformation. For sufficiently long
refractory time �, the rippling pattern and the temporal
evolution obtained in the model [Figs. 3(c) and 3(d)] are in
good agreement with the experimental data of Fig. 1.
Waves propagate equally in both directions; their super-
position forms a standing wave. The pattern is easily
recognizable—wavelength and period of the ripples have
been reproduced in several independent runs.

Wavelength and temporal period of the ripple pattern
increase with the duration � of the refractory phase
[see Figs. 4(a) and 4(b)]. In 3D, wavelength and temporal
period are up to 20% smaller than in 2D [see Figs. 4(a) and
4(b)]. The experimental values of wavelength and tem-
poral period of the rippling pattern are reproduced
with refractory times of 4–5 min. The 3D model also
shows straightening of the ripples in the course of the
simulations.

The discrete model enables us to track the single cell
behavior. Typically, cells move over a distance of about
078101-2
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FIG. 4. Ripple wavelength � (a) and period T (b) versus
refractory time � for 2D simulations (solid squares), 3D simu-
lations (open squares), and 2D mean-field theory (solid line).
(c) Single cell track with an enlargement of the marked region.
(d) Reversal frequency against refractory time in 2D simulations
(solid squares) and 3D simulations (open squares) compared to
experiment (dotted line) and largest possible value rmax (solid
line).

FIG. 3. (a) Simulation snapshot in a system of size 300 50
with a refractory phase � � 3 min after ca. 2000 time steps and
(b) corresponding space-time plot of the height profile (black
corresponds to high columns) along 50 lattice sites in the x
direction over 100 time steps. One can recognize a noise-induced
pattern without long-range correlations. (c),(d) Same as (a),(b)
but with a refractory phase � � 5 min. The pattern is now very
regular and stable.
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half a wavelength before they reverse their orientation [see
Fig. 4(c)]. We measured the average reversal frequency of
individual cells in the simulations taking advantage of the
discrete, particle-based nature of our model. A typical
trajectory of an individual cell in the model is displayed
in Fig. 4(c). Most of the time, the cells in the model ride
with the ripple crest and get reflected when two crests
collide. Occasionally a cell ‘‘tunnels’’ through and contin-
ues a longer way with the same crest. The dependence of
the mean reversal frequency on the refractory time � is
shown in Fig. 4(d) for 2D and 3D simulations. The reversal
frequency is considerably larger in 3D due to the larger
interaction neighborhood. For refractory times between 4
and 5 min, we measure mean reversal frequencies of ca. 0.2
per cell per minute in 3D (0.13 per cell per minute in 2D) in
rough agreement with the experimentally observed values
of ca. 0.1 reversals per cell and minute [20].

While previous experiments have not provided direct
information about the duration of a refractory phase, meas-
urements of reversal rates of myxobacteria exposed to high
concentrations of isolated C-factor may give a first clue.
Sager and Kaiser report an increased absolute reversal rate
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of roughly 0.3 reversals per cell per minute [20]. This can
be interpreted as an upper bound for the reversal rate
resulting from a refractory phase of ca. 3–4 min.

Mean-field theory.—Additional insight is obtained by
deriving a mean-field theory of the discrete model in 2D.
Such a description uses a hierarchy of rate equations in
discrete time and space, which replace the discrete state
variables by their average numbers. The mean-field
scheme leads to the following set of 2� equations:

r1�x; t� 1� � r1�x� 1; t� � fr�x� 1; t� � r��x� 1; t�
r2�x; t� 1� � fl�x� 1; t�

..

.

r��x; t� 1� � r��1�x� 1; t�;

l1�x; t� 1� � l1�x� 1; t� � fl�x� 1; t� � l��x� 1; t�
l2�x; t� 1� � fr�x� 1; t�

..

.

l��x; t� 1� � l��1�x� 1; t�;

(1)

where r1 (l1) are right (left) moving cells that can reverse,
while r2; . . . ; r� (l2; . . . ; l�) denote right (left) moving cells
in the various stages of the refractory phase. The functions
fr and fl describe the average numbers of reversals of right
and left moving cells. From simple probability arguments
we obtain
078101-3
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fr�x; t� �
�

r1�x; t�Sl�x� 1; t�
max�Sr�x; t� � Sl�x; t�; Sr�x� 1; t� � Sl�x� 1; t��

�
;

fl�x; t� �
�

l1�x; t�Sr�x� 1; t�
max�Sr�x; t� � Sl�x; t�; Sr�x� 1; t� � Sl�x� 1; t��

�
;

(2)

P
�

P
�
where Sr�x; t� � i�1 ri�x; t� and Sl�x; t� � i�1 li�x; t�.

Since the number of particles on any given site is rather
small, it is not sufficient to use their mean values in the
reversal function which would be the standard approach for
the derivation of, e.g., rate equations describing chemical
reactions. Instead, one has to specify the distribution of the
quantities l1; r1 around their mean values and sum over all
possible states [indicated by the angle brackets in Eqs. (2)].
We have used Poissonian weights and performed a linear
stability analysis of the homogeneous stationary state
r1�x; t� � l1�x; t� � �S and ri�x; t� � li�x; t� � �R for i �
2; . . . ; �. This state describes a flat layer of cells with equal
amounts of left and right moving bacteria. The actual
values of �S and �R depend on the parameters � and
�nn and obey �R � fr�x; t� � fl�x; t� and �nn � 2��S�
��� 1��R�. For � � 5 and �nn � 3, we find, for example,
�S � 0:635 and �R � 0:216.

The linear stability analysis of the rate equations (1) with
�nn � 3 reveals a linear instability of this flat layer state
against an oscillatory instability with finite wave number
for � 	 4 min (see eigenvalue curves in Fig. 5).

Moreover, we obtain the wave number k with the fastest
growth rate for � 	 4 min or with weakest damping
for � < 4 min and the associated frequency ! as a function
of the refractory time � from the maxima of the curves in
Fig. 5. A comparison of the corresponding wavelengths
� � 2�=k and periods T � 2�=! with equivalent quanti-
ties extracted from a Fourier analysis of simulation data
of the 2D model shows good agreement below and near
the threshold � � 4 min [see Figs. 4(a) and 4(b)]. Above
the threshold, nonlinear effects lead to a deviation of the
predictions from linear stability analysis.

Summary.—We present a discrete model for the forma-
tion of standing wave ripple patterns during the aggrega-
tion of myxobacteria. The reversal mechanism of cells
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FIG. 5. Numerically obtained real part of eigenvalues for the
linearization of Eqs. (1). Only the branch with the rippling
instability is shown. Parameters: (a) � � 5 min, (b) � � 4 min,
and (c) � � 3 min.

078101-4
following collisions has to be supplemented by a refractory
phase that specifies a minimum time between subsequent
reversals. The duration of this phase determines the wave-
length and the period of the ripple pattern. The ‘‘micro-
scopic’’ single cell behavior in the discrete model agrees
well with the experiments on the reversal frequency of cells
in [20]. Recent experiments show also traveling wave
rippling patterns [21], which have been modeled with
continuous models derived from similar assumptions to
the ones described here [22,23]. Our study strongly sug-
gests further experiments of single cell motility to verify
the refractory hypothesis and to elucidate its biochemical
basis. Moreover, myxobacterial rippling provides the first
example of pattern formation mediated by migration and
direct cell-cell interaction, which may also be involved in
myxobacterial fruiting body formation as well as self-
organization processes in other multicellular systems.
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