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Magnon Dispersion in the Field-Induced Magnetically Ordered Phase of TlCuCl3
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The magnetic properties of the interacting dimer system TlCuCl3 are investigated within a bond-
operator formulation. The observed field-induced staggered magnetic order perpendicular to the field is
described as a Bose condensation of magnons which are linear combinations of dimer singlet and triplet
modes. This technique accounts for the magnetization curve and for the field dependence of the magnon
dispersion curves observed by high-field neutron scattering measurements.
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TlCuCl3 is an insulating quantum spin system with a
gap in the spin excitation spectrum [1] at zero field which
originates from dimerization of the S � 1=2 spins of
the Cu2� ions. The compound is isostructural to KCuCl3
and the crystal structure can be considered as coupled
two-leg ladders separated by Tl� ions. However, inelastic
neutron scattering (INS) measurements of triplet magnon
excitations found that the magnon modes have significant
dispersion in all three spatial dimensions for both TlCuCl3
and KCuCl3 [2–4]. This indicates that these compounds
are three-dimensional (3D) interacting dimer systems with
interladder interactions stronger than the interdimer
interactions within the ladders. As observed in INS experi-
ments by Cavadini et al., the magnon modes are split into
three by a magnetic field, with splitting proportional to
the field, and the lowest mode becomes soft at a critical
field Hc [5]. For TlCuCl3 (KCuCl3), the zero-field excita-
tion gap and Hc are, respectively, 0.7 meV (2.6 meV) and
5.7 T (20 T).

For H > Hc, both compounds show a uniform magnet-
ization parallel to the field [6]. Elastic neutron scattering
measurements on TlCuCl3 show in addition a staggered
magnetic order perpendicular to the field [7]. A Goldstone
mode is then expected due to the breaking of rotational
symmetry around the field axis. Very recently, Rüegg et al.
observed such a gapless mode for H > Hc in TlCuCl3 [8],
0031-9007=02=89(7)=077203(4)$20.00 
and also reported a renormalized field dependence of the
higher magnon modes [9].

Field-induced magnetic order in otherwise gapped lad-
der systems has been described [10,11] by theoretical
approaches which focus only on the singlet and the lowest
triplet magnon. Giamarchi and Tsvelik [12] cast their
theory as a Bose condensation of a soft mode, and for
TlCuCl3 the Bose condensation of magnons has been
used [13,14] to account for the observed temperature
dependence of the magnetization. A quantum Monte
Carlo simulation on a simplified 3D cubic lattice was
also in agreement with an interpretation as magnon con-
densation [15].

We note that the structure of the observed staggered
order is related to the wave vector of the soft magnon
[5,7], in support of the idea of a magnon Bose condensa-
tion. In this paper we develop a microscopic theory of
field-induced magnetic order which takes into account
the higher triplet modes. These modes, as we will show
below, must be included to obtain a complete description of
the condensate and of the evolution of the magnon dis-
persion in the presence of field-induced magnetic order.
We use a bond-operator formulation which retains all four
states of each dimer, analogous to the treatment of bilayer
antiferromagnets by Sommer et al. [16].

For the parametrization of the couplings between the
Cu2� ion spins, we follow Ref. [3]. The unit cell contains
two equivalent dimers, and the Hamiltonian is given by
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Here Smn;j is the spin S � 1=2 operator in unit cell j on the
sublattice m � 1; 2, and n ( � l; r) denotes the left or right
spin of the dimer. d1 � âa, d2 � 2âa � ĉc, and d3� � b̂b=2�
�âa � ĉc=2�, where âa, b̂b, and ĉc are unit vectors correspond-
ing to the a, b, and c axes, respectively [3].

Because the intradimer exchange coupling J is the larg-
est [3,4], we introduce bond operators sy and ty� based on
these dimers [17]. In the presence of an external field, the
appropriate operators are [18]

syj0i � �j "#i � j #"i�=
���
2

p
; ty�j0i � �j ""i;

ty0 j0i � �j "#i � j #"i�=
���
2

p
; ty�j0i � j ##i:

These have Bose statistics and are subject to the constraint
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FIG. 1. Zero-field magnon dispersion relations for TlCuCl3
and KCuCl3. The x-axis labels represent the reciprocal-space
points B � �0; 2 ; 2 �, C � �0; 0; 2 �, D � �0; 0; 0�, A �
� ; 0; 0�, and F � � ; 0; 2 �. Experimental results [3] are shown
as points, and were measured at T � 1:5 K (5 K) for TlCuCl3
(KCuCl3). Solid lines are theoretical results using the parameters
listed in Table I.

TABLE I. Effective dimer interactions.

TlCuCl3 KCuCl3

J [meV] 5.501 4.221
Ja [meV] -0.215 -0.212
Ja2c [meV] -1.581 -0.395
Jabc [meV] 0.455 0.352
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j for the dimer operators, where 2N is

the total dimer number.
We restrict our considerations to zero temperature, and

begin with the low-field region (H � Hc). Here the dimer
singlets have the lowest energy, so the s bosons are taken to
be condensed. The s operators are replaced by a c number
smk � �ss0�k;0 [19], and the local constraint relaxed to the
global one �ss�0 �ss0 � N �
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where fk � Ja coskx � Ja2c cos�2kx � kz�, gk �
2Jabc cos�kx � kz=2� cos�ky=2�, ��� � ��, and �mm � 2; 1
for m � 1; 2. The effective interdimer interactions [3] are
given by Ja � J1 � J01=2, Ja2c � �J02=2, and Jabc �
�J3 � J03�=2, where we note changes in the signs of the
parameters Ja2c and, for J01 > 2J1; Ja. Introducing the
operators t�k� � �t1k� � t2k��=

���
2

p
gives two independent

��� modes [20] whose eigenvalues are obtained by the
Bogoliubov transformation [18]

E�
k� �

�����������������������������������������������������������
�J� fk � gk�2 � �fk � gk�2

q
� �g�BH: (3)

The Brillouin zone lies between � and  (unit lattice
spacing) in each direction, and the two branches corre-
spond to the two-sublattice system. We treat only the �
mode in the expanded Brillouin zone ( � 2 � kz � 2 )
in the z direction, because the magnon dispersions obey the
relations E�

k� � E�
k��0;0;2��;�. We extract the effective in-

teractions (J, Ja, Ja2c, Jabc) from the data at zero field for
both TlCuCl3 and KCuCl3 (Fig. 1), and these are listed in
Table I. The values are consistent with the results of
Ref. [4]. They are also similar to those of Ref. [3], but
not identical because the current treatment [leading to (3)]
goes beyond a pure dimer description. The signs are con-
sistent with the expectation that all intersite parameters fJg
in (1) are antiferromagnetic.

The three magnon modes are degenerate in zero field,
and, as shown in Fig. 2, are split linearly by an external
field in agreement with INS results [5]. Below Hc, a ty�
triplet excited from the singlet condensate may propagate
due to the interaction between triplets and singlets. The
wave function of this excited state can be approximated by
a linear combination of dimer singlets and triplets as

j i � u�j "#i � j #"i� � vei�k�r
m
j �Ek�t�j ""i; (4)

where u is of order unity and v is a small, real coefficient.
The expectation values of the spin operator components at
077203-2
a given dimer j; m in the state (4) are

hSl;zij;m � hSr;zij;m � v2=2;

hSl;xij;m � �hSr;xij;m � �uv=2� cos�k � rmj � Ek�t�;

hSl;yij;m � �hSr;yij;m ���uv=2� sin�k � rmj � Ek�t�:

(5)

This excited mode has a very small, uniform magnetic
moment parallel to the field, and thus gains Zeeman en-
ergy. Perpendicular to the field, it also possesses a finite
magnetic moment, which is characterized by the wave
vector k and energy E�

k;�, and is staggered (spins l and r
oppositely aligned) due to the antiferromagnetic intradimer
coupling. For the mode ty�, the direction of the uniform
magnetic moment is antiparallel to the field, leading to a
higher Zeeman energy. Finally, the ty0 mode has no magnet-
ization perpendicular to the field, and a moment parallel
to the field which is modulated with wave vector k, so its
energy does not shift with the field. On increasing the
field, these modes shift position without changing the
shape of their dispersion (3), and the lowest (� � �)
077203-2
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FIG. 2. Calculated magnon dispersions for TlCuCl3 at H �
Hc�� 5:6 T� (a), and H > Hc (H � 12 T) (b).
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mode becomes gapless at the point C with Q � �0; 0; 2 �
[Fig. 2(a)], which determines the critical field. Thus atH �
Hc, the lowest mode exhibits a quadratic dependence on k
around Q.

To describe the field regime with H > Hc, the
Hamiltonian (2) must be extended to include triplet-triplet
interactions. The coefficients of these terms involve com-
binations of the intersite exchange constants in (1) beyond
the interdimer interactions in (2). To determine these we
have made the simplifying assumption that J1 � J03 � 0,
so that the three remaining coefficients, J01, J02, and J3, are
specified by the interdimer interactions. Because the
additional triplet-triplet interactions are largely governed
by terms involving J02, this is not a significant approxima-
tion. A further assumption is made by neglecting terms
involving three t operators, which give only small correc-
tions concentrated in the region of maximum staggered
magnetic order. For H > Hc, Bose condensation of the
lowest triplet implies a macroscopic occupation of the
tk� mode at Q.

For a full description of this regime, the singlet and
triplet operators are transformed [16] to

amk � usmk � v�xtmk�Q;� � ytmk�Q;��;

bmk� � u�xtmk� � ytmk�� � vsmk�Q; bmk0 � tmk0;

bmk� � xtmk� � ytmk�:

(6)

The k-independent coefficients u, v, x, and y arise from
two unitary transformations, and may be written as u �
cos*, v � sin*, x � cos+, y � sin+, with * and + to be
determined. We treat the amk operator as uniformly con-
densed, amk � �aa0�k;0, and the ground state as a coherent
condensate of the am0 operator. We emphasize that the
highest triplet mode (tmQ�) also participates in the conden-
sate, because H contains processes ty�t

y
�sswhich nucleate

t� and t� triplets from singlets. The linear combination of
singlet and triplets in the condensate am0 yields a staggered
077203-3
magnetization perpendicular to the field with wave vector
Q, as observed in Ref. [7].

With the transformation of Eq. (7), the Hamiltonian to
quadratic order in the b operators takes the form H �
O�b0� �O�b1� �O�b2�. Because the particle number is
unaltered, the c-number �aa0 may be replaced by �aa�0 �aa0 �
N �

P
k;� b

my
k� b

m
k�. The constant terms �O�b0�� represent

the mean-field energy of the a0 condensate, and the pa-
rameters (*, +) are chosen to minimize this energy, which
also eliminates the O�b1� terms in the transformed
Hamiltonian. The critical field Hc is determined by the
condition *! 0, which gives purely singlet character to
the condensate. The limit (* �  =2, + � 0) gives a con-
densate with purely triplet t� character, and determines the
saturation field Hs for full parallel polarization. The values
for Hc and Hs are

Hc �

���������������������������������������������������������������
J2 � 2J�jJaj � jJa2cj � 2Jabc�

q
=�g�B�;

Hs � �J� 2jJaj � 2jJa2cj � 4Jabc�=�g�B�;
(7)

where the form of Hc coincides with the soft-mode con-
dition in the low-field regime.

The O�b2� terms are diagonalized by a Bogoliubov
transformation which yields the energies of the collective
modes of the condensate. Above Hc, the lowest mode
remains gapless, but develops a linear dependence on k
near Q [Fig. 2(b)]. This is a Goldstone mode: a staggered
magnetic moment M?, whose mean-field value is M? �
uv�x� y�=

���
2

p
, is induced perpendicular to the magnetic

field, and this breaks rotational symmetry around the axis
parallel to the field. Rotations of this induced staggered
moment are realized by changing the phase of x and y in
Eq. (7) (x! e�i.x, y! ei.y, where . is the rotation
angle), and do not change the energy. As a result, the
Goldstone mode remains gapless, and the field dependence
of the higher modes is also renormalized, in agreement
with experiment (Fig. 3). The energy gaps of the higher
modes Eg0 and Eg� show an abrupt increase in slope at Hc
(Fig. 3). At the saturation fieldHs, the k dependence of the
lowest excitation mode near Q becomes quadratic again. In
the high-field region above Hs, the condensate consists
only of the lowest-lying triplet, and a gap reopens in the
spectrum of the lowest (pure singlet) excitation mode (inset
of Fig. 3).

We may also consider the parallel and perpendicular
magnetization curves. For TlCuCl3 (KCuCl3), the parame-
ters of Table I give a critical field of Hc � 5:6 T (19:6 T),
which is consistent with the measured value [6]. For both
TlCuCl3 and KCuCl3, the square of the staggered moment
(M2

?) has linear dependence close to Hc and to Hs (Fig. 4),
indicating that M? �

�����������������
H �Hc

p
. For KCuCl3, the magnet-

ization parallel to the field (Mk) is almost linear in H, as
shown in Fig. 4(a), in good agreement with experiment.
For TlCuCl3, the field dependence of Mk appears not to
be linear in H, again in very good agreement with the
observed form [6]. The theoretical mean-field value is
077203-3



0 20 40 60 80 100
0

10

20

0 2 4 6 8 10 12
H[T]

0

1

2

3
E

g[
m

eV
]

Eg+

Eg0

Eg Eg 

Eg0

Eg+

FIG. 3. Field dependence of the energy gap of the three
magnon modes in TlCuCl3. Points are data from the INS
experiment of Ref. [9], and solid lines the results of the present
theory. Inset: field dependence at high fields. We have used g �
2:16 for the g factor of TlCuCl3 [9].

VOLUME 89, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 12 AUGUST 2002
given by Mk � v2�x2 � y2�, from which it is clear that this
difference is due to the magnitude of the interdimer inter-
actions. If the contribution to the am0 operator of the highest
triplet mode (t�) is neglected [Eq. (7)], Mk would become
completely linear in H. However, the strong interdimer
interactions involve the highest mode largely through in-
teractions of the type ty�t

y
�ss, which cost Zeeman energy,

thus reducing the value of v for the am0 operator, and
consequently Mk is suppressed near Hc for TlCuCl3.

We have studied the evolution of the magnon dispersion
in TlCuCl3 and KCuCl3 as the magnetic field is tuned
through the quantum critical point separating a gapped
spin-liquid state from a state of field-induced staggered
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FIG. 4. Normalized magnetization curves for KCuCl3 (a), and
TlCuCl3 (b). The solid line (Mk) is the magnetization parallel to
the field and the dashed line (M2

k
) the square of the magnet-

ization perpendicular to the field. Open (filled) points are ex-
perimental data for Mk (M2

?) measured at T � 1:3 K (0.2 K)
[7,21], where g � 2:29 is the g factor for KCuCl3. For TlCuCl3
we have used the same g as in Fig. 3.
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magnetic order which exists between the critical and satu-
ration fields. A consistent theory requires the admixture of
both the lowest and highest triplet modes into the singlet
dimer state to form a Bose condensate. The spectrum has a
gapless Goldstone mode associated with the breaking of
rotational symmetry by the staggered magnetic order, as
observed by Rüegg et al. [8] for TlCuCl3. The two higher
excitation modes are also renormalized, in further agree-
ment with observation [9]. Finally, our zero-temperature
mean-field description is also in good accord with meas-
urements [6,7,21] of the uniform and staggered magnet-
ization for both KCuCl3 and TlCuCl3.
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