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Topological Origin of Zero-Energy Edge States in Particle-Hole Symmetric Systems
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A criterion to determine the existence of zero-energy edge states is discussed for a class of particle-hole
symmetric Hamiltonians. A ‘‘loop’’ in a parameter space is assigned for each one-dimensional bulk
Hamiltonian, and its topological properties, combined with the chiral symmetry, play an essential role. It
provides a unified framework to discuss zero-energy edge modes for several systems such as fully gapped
superconductors, two-dimensional d-wave superconductors, and graphite ribbons. A variance of the
Peierls instability caused by the presence of edges is also discussed.
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electron creation/annihilation operators at site x. The total to answer this question is to consider a continuous
Depending on several parameters such as hopping inte-
grals or chemical potentials, and also on underlying crys-
talline lattices, a large variety of electronic structures are
realized in condensed matter physics. Electron correlations
also give rise to plenty of quantum phases, forming non-
trivial quasiparticle band structures. An interesting conse-
quence of a rich band structure is the existence of edge
states that may appear when boundaries are present. In the
quantum Hall effect (QHE), this issue was discussed in
terms of the origin of the quantization of a Hall conduc-
tance [1–5]. Recently, the ideas developed in the QHE have
also been extended for other gapped many-body systems
and become essential to describing the topological nature
of several quantum phases [6–11].

Apart from these examples for gapped systems, edge
states in gapless systems have attracted much attention
recently. Examples of these are d-wave superconductor
(SC) with edges [12,13] or graphite ribbons [14], where
the existence of edge states strongly depends on the shape
of the edges. For d-wave SC with edges, the zero bias
conductance peak due to zero-energy edge states was
observed via tunneling spectroscopy [15,16].

The issue addressed in this Letter is how to infer the
existence of zero-energy eigenstates localized on the
boundaries in terms of properties of the bulk and the
symmetry. We first consider one-dimensional (1D) systems
with a particle-hole symmetry and then apply the results to
systems in higher dimensions. Especially, we will demon-
strate applications to fully gapped SC in conjunction with
the Chern number, 2D d-wave SC, and graphite ribbons. In
addition to these examples, the present Letter is also ap-
plicable to zero modes in the 1D molecule polyacetylene
[17] and quantum spin systems.

We start with the following single-particle Hamiltonian
on a 1D lattice:

H �
X
x;x0

cyx hx;x0cx0 ; hx;x0 �
tx;x0 �x;x0

�0
x;x0 �tx;x0

" #
� hyx0;x;

where tx;x0 , �x;x0 , �0
x;x0 2 C, and cyx � �cyx"; cx#	 denotes
0031-9007=02=89(7)=077002(4)$20.00 
number of the lattice sites is Nx and x � 1; . . . ; Nx. This
Hamiltonian includes the Bogoliubov–de Gennes Hamil-
tonian both for singlet and (some of) triplet SC.

In the following, we consider two types of Hamiltonians:
the bulk Hamiltonian and the edge Hamiltonian. As for
the bulk Hamiltonian, assuming that the system is transla-
tionally invariant, hx;x0 � h�x� x0	, and adopting a peri-
odic boundary condition (PBC), we can perform the
Fourier transformation to obtain H bulk �

P
k c

y
k hkck �P

k c
y
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�ck, where cx � 1=
������
Nx

p P
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ikxck, k 2
��;� � S1 is the crystal momentum, and 	k 2 R,
�k 2 C. Since ��Yhk�Y	

� � �hk (�X;Y;Z represent the
Pauli matrices), eigenvalues E and �E always appear in
a pair for each k, which we call the particle-hole symmetry.
Let us introduce a convenient parametrization for H bulk in
k space

hk � R�k	 � �;

where R�k	 � �X; Y; Z	 :� �Re�k;�Im�k; 	k	 2 R3. In
this parametrization, the energy eigenvalues are given by
E�k	 � �jR�k	j. The origin O 2 R3 corresponds to the
gap-closing point. For a given k 2 S1, there exists a one to
one correspondence between a point in 3D space R�k	 and
hk, and hence we can identify a loop ‘: k 2 S1 ! R�k	 2
R3 for each 1D Hamiltonian H bulk; for a given parame-
trized loop, we can always reconstruct H bulk by inverse
Fourier transformation [18]. We write H bulk
‘� for the
Hamiltonian which corresponds to ‘ hereafter.

An edge Hamiltonian H edge is generated by truncating
a bulk Hamiltonian H bulk
‘� in a certain way. We refer to
an edge Hamiltonian as H edge
‘; e�, where e represents a
prescription for creating edges. For example, a natural way
of truncation is to prohibit all the matrix elements across
Nx, i.e., set hx;x0 � 0 if Nx 2 
x; x0�, which we call ec.
Generally, e can represent an impurity potential at an
edge, coexistence of different order parameters near
boundaries in superconducting systems, etc. Then we
ask if H edge
‘; e� supports zero-energy states localized
at either end of the sample for given ‘ and e. Our strategy
2002 The American Physical Society 077002-1
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FIG. 1. (a) Continuously deforming ‘c into a loop ‘� � ‘c.
During the deformation, the loop is kept on the 2D plane without
crossing O. (b) A possible energy spectrum during the deform-
ation. A thick/broken line represents an edge mode localized
at R=L.

VOLUME 89, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 12 AUGUST 2002
deformation of a Hamiltonian from a reference
Hamiltonian with exact zero-energy edge states, in con-
junction with a symmetry.

In the following, let us focus on a loop on a 2D plane that
contains the origin O in R space. We crown such loops
with a superscript � as a reminder, thereby referred to as ‘�.
As a prescription for creating edges, we adopt ec for a
while. Let j‘; E; pi denote an edge state of H edge
‘; ec�
with energy E, localizing at p � L�R	 where L�R	 repre-
sents the left(right) edge. We assume a state which appears
within the bulk energy gap is localized at either end of the
sample for an infinite system. A state localized at both ends
also may appear, which is a superposition made from two
independent edge states localized at the left and the right.
We will show

(A) If H edge
‘�; ec� has an edge state at nonzero energy
j‘�; E � 0; pi, it also has j‘�;�E; pi, which localizes at
the same edge with the opposite energy.

First, note that we can restrict ourselves to loops on the
XY plane, since an arbitrary 2D plane can be rotated to the
XY plane by a unitary transformation: a global SO(3)
rotation in R space, which amounts to a SU(2) transfor-
mation on cx for each site. To prove the statement, it is
essential that the particle-hole symmetry is promoted to
the chiral symmetry for H edge
‘�; ec�. Since all the hop-
ping tx;0x is zero for loops on the XY plane, the Hamiltonian
can be expressed as H edge
‘�; ec� � �cy" ; c#	H�c"

cy
#

	, H �


 0
Dy

D
0 �. Then, � :� 1 � �Z anticommutes with H,

�H� � �H, which we call the chiral symmetry.
Consequently, if H edge
‘�; ec� has an edge mode j i �
j‘�; E � 0; pi, it also has an edge mode with energy �E,
�j i � j‘�;�E; qi. Moreover, since � is a purely local
operator which only changes the phase of c", i.e., it does
not ‘‘mix’’ the coordinate in the real space, j i and �j i
should be localized at the same edge, q � p. Notice that
the above discussion is not applicable for E � 0, since both
j i and �j i have the same energy, and hence can be the
equivalent state.

Next, we further assume that ‘� is continuously de-
formed into a unite circle ‘c centered at O, such that the
loop is always on the 2D plane and does not cross O during
the deformation (Fig. 1). For a loop ‘� with this property,
we write as ‘� � ‘c henceforth. We can prove that

(B) H edge
‘� � ‘c; ec� has at least a pair of edge states
at zero energy.

To see this, we focus on R�k	 � �cosk;� sink; 0	 and
the corresponding Hamiltonian H edge
‘c; ec� �PNx�1
x�1 cyx 
00

1
0�cx�1 � H:c: Since c1#; c

y
1#; cNx"; c

y
Nx"

do not
appear in H edge
‘c; ec�, there are two exact zero-energy
levels, which localize at x � 1 and x � Nx, i.e.,
H edge
‘c; ec� has two edge states j‘c; 0; Li and j‘c; 0; Ri
[19]. By assumption, we can deform ‘c into ‘� continu-
ously. During the deformation, j‘c; 0; Li and j‘c; 0; Ri do
not go away from zero energy, since we can apply (A), and
the bulk energy gap does not collapse. Although other edge
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states jE; pi and j � E; pi may appear in pairs from the
bulk energy bands, since the number of edge modes local-
ized at L=R is always odd, there must exist at least a pair of
zero-energy states.

Although we have concerned ourselves with a certain
type of edge ec, let us next consider to adiabatically modify
ec. As far as the modified prescription does not break the
chiral symmetry, the perturbed Hamiltonian also supports
exact zero-energy edge states, since perturbations at the
edges do not collapse the energy gap. Thus, we have shown

(C) For a prescription e� that respects the chiral sym-
metry, H edge
‘� � ‘c; e

�� possesses at least a pair of zero-
energy states.

In summary, there are three conditions for H edge
‘; e� to
support zero-energy edge states: (A) ‘ is on a 2D plane that
contains O, (‘�), (B) ‘ is continuously deformed to ‘c
without crossing O, (‘� ‘c), and (C) e respects the chiral
symmetry, (e�).

We have established our main results, and a few com-
ments are in order. First, notice that the edge states dis-
cussed here are not at exact zero-energy for a finite system,
though j‘c; 0; Li and j‘c; 0; Ri are exact zero-energy states.
This is allowed since an assumption for the statement (A)
does not hold for a finite system size. In this case, a state
localized at both ends cannot be decomposed into two
independent edge states, which we can regard as a hybri-
dized state made from the two edge modes at the left and
the right. In Nx ! 1, this state becomes degenerate with
another hybridized state.

Second, consider a unit circle ‘nc that encloses O n times
(n:odd). H edge
‘nc; ec� can be diagonalized in the same
way as H edge
‘c; ec�, resulting in 2n exact zero-energy
states. Then, by the same discussion, a class of
Hamiltonians H edge
‘� � ‘nc; e�� have at least one pair
of edge states at E � 0.

We go on to applications of the present results. We adopt
ec as a prescription for creating edges unless otherwise
stated. First, we discuss fully gapped systems and edge
states. Especially, we comment on a topological aspect of
2D SC with a full gap, whose examples include d� id SC
077002-2



FIG. 2. Loops in R space and the energy spectrum of
dx2�y2 -wave SC with (a) �110	 and (b) �100	 surfaces. Dotted
squares show a choice of unit cell in Fourier transforming along
the edges. The calculation is for Nx � 50 for �110	 surfaces and
Nx � 30 for �100	 surfaces.
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and the chiral p-wave SC [6–11]. For these SC, we can
define an integer called the Chern number, the nonzero
value of which implies the existence of edge states con-
necting the upper and the lower bands as known in the
QHE [5]. The present results are consistent with this dis-
cussion. For 2D systems with edges, we first Fourier trans-
form along a direction parallel to the edge to get a family of
1D Hamiltonians parametrized by the wave number along
the edge. Then, we can apply the present discussions for
each 1D Hamiltonian. Since the nonzero Chern number
implies there exists a loop which is on a plane and encloses
O [11], both the topological argument and the present
results lead to existence of zero-energy edge modes. For
fully gapped systems, edge modes are expected to be stable
even in the presence of electron-electron interaction as far
as the bulk energy gap is not collapsed.

Although the topological argument is only applicable for
fully gapped systems, our results here are not restricted to
gapped cases and can be applicable also for gapless cases
in arbitrary dimensions. Here, as an application, we con-
sider surface states for dx2�y2-wave SC. In Ref. [12], a
semiclassical approach was employed to show that the sign
change of the pair potential at a (110) surface gives rise to
existence of edge states, which can be used as a phase
sensitive probe to detect pairing symmetries. It was also
pointed out that the Andreev equation for the present
system is closely related to Witten’s supersymmetric quan-
tum mechanics [13,20]. Here, we discuss this issue with a
lattice regularization.

Consider 2D dx2�y2-wave SC H bulk �P
PBC
r 
cyr hxcr�x � cyr hycr�y � H:c:� cyr h0cr�, where

hx � 
 t�
�
�t�, hy � 
 t

��
��
�t �, and h0 � 
�0

0
���. (We set t �

� � 1; � � 0 as an example.) We terminate this system
and consider �110	 surfaces first. Fourier transforming
along the y0 direction in Fig. 2(a), we obtain a family of
1D Hamiltonians parametrized by ky0 . The cor-
responding loops are Rky0

�kx	 � 
2 cos�kx � ky0 	�
2 coskx; 0; 2 cos�kx � ky0 	 � 2 coskx�. For a given ky0 , �1�
cosky0 	�X=2	2 � �1� cosky0 	�Z=2	2 � 2 sin2ky0 is satis-
fied, which is an ellipsis on the XZ plane enclosing O.
Thus, from the above discussion, the present system sup-
ports zero-energy surface states for all ky0 except at the
gap-closing points ky0 � �; 0, where the loop collapses
into a line segment.

On the other hand, for (100) surfaces, we obtain
Rky�kx	 � 
2�coskx � cosky	; 0; 2�coskx � cosky	�, which
is a line segment on the XZ plane for all ky. Zero-energy
edge states are not expected to exist for this case. We have
verified numerically this prediction in Fig. 2(b).

Let us comment on an interplay between zero-energy
edge states and interactions for the present case. If we treat
the problem self-consistently, coexistence of is- or
idxy-wave order parameters with dx2�y2 waves near the
surface is possible for the �110	 surface, locally breaking
the time-reversal symmetry [21]. This can be interpreted
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based on the present discussions as follows. Since edge
states with different ky0 are all degenerate at E � 0, they
are expected to cause a Peierls-like instability. In the
presence of interactions, parameters in a single-particle
Hamiltonian t;�;�0 near the edges might be effectively
modified in order to lift the degeneracy and thereby lower
the ground state energy. However, since these zero-energy
edge states are stable to perturbations which respect the
chiral symmetry [statement (C)], such modifications
should be accompanied with the breaking of the chiral
symmetry near the boundaries. The emergence of is or
idxy components near the boundary indeed breaks the
chiral symmetry to lift the degeneracy of edge modes,
while a purely real order parameter cannot do it.

We turn to edge states in graphite ribbons. There are
several types of edges for a graphite ribbon, such as zigzag,
bearded, and armchair edge [14]. Defining c" � c� and
cy# � c�, where c�=� is an electron annihilation operator
on a sublattice �= � , we can apply our formalism to
graphite ribbons. Notice that we have several options for
choosing c�=� to form a spinor c, since they live on differ-
ent sites. When we truncate the system, these choices lead
to different shapes of edges (Fig. 3). Taking an appropriate
pair for each type of edge as indicated in Fig. 3, we can
discuss in parallel to the above SC example. The existence
of zero-energy edge states is predicted for the zigzag and
the bearded cases, while we do not expect zero-energy
edge states for an armchair edge, which is confirmed by
a numerical calculation (see Fig. 3). These zero-energy
edge modes are continuously connected to the gapless
bulk spectrum, forming a flat band and a sharp peak in
density of states at the Fermi energy. This might trigger an
077002-3
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FIG. 3. Loops in R space and the energy spectrum of a
graphite ribbon with (a) zigzag, (b) bearded, and (c) armchair
edges. The ovals indicate how to form a spinor c for each edge,
and dotted squares show a choice of unit cell in Fourier trans-
forming along the edges. The loops corresponding to a one-
parameter family of Hamiltonians are (a) Rky �kx0 	 � 
cos�ky �
kx0 	 � 1� cosky;� sin�ky � kx0 	 � sinky; 0�, (b) 
coskx0 �
cos�ky � kx0 	 � 1; sinkx0 � sin�ky � kx0 	; 0�, (c) 
cos�kx0 � ky	 �
coskx0 � 1;� sin�kx0 � ky	 � sinkx0 ; 0�. Here we have taken all
the hopping integrals equal to unity, and ky is a wave number
along the edges. The calculation is for Nx0 � 30 for zigzag and
bearded edges and Nx0 � 29 for armchair edges.
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instability in the presence of electron-electron or electron-
phonon interactions, which leads to, for example, a mag-
netic polarization near the boundaries [14].

To conclude, we have established a criterion to deter-
mine the existence of zero-energy edge modes in terms of
077002-4
bulk properties and the chiral symmetry. Our strategy is to
make use of the chiral symmetry and a continuous defor-
mation of a reference Hamiltonian with exact zero-energy
edge states. The present discussions are applicable for both
gapped and gapless systems in arbitrary dimensions.
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