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Using heuristic arguments and numerical simulations it is argued that the critical exponent � describing
the localization length divergence at the integer quantum-Hall transition is modified in the presence of
spin-orbit scattering with short-range correlations. The exponent is very close to � � 4=3, the percolation
correlation length exponent, consistent with the prediction of a semiclassical argument. In addition, a band
of weakly localized states is conjectured.
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hills or valleys, and there is a critical energy Ec where the
trajectory percolates through the entire system [14]. Away with �so � �Ec � E��� and � � �p � 4=3.
Spin-orbit scattering (SOS) causes pronounced effects in
disordered systems. In three dimensions (3D), it changes
the universality class of the metal-insulator transition [1],
while for a system of noninteracting electrons in 2D, it
leads to a metal-insulator transition, which does not exist in
its absence [2]. In the weakly localized regime, SOS
changes localization into antilocalization [3], reversing
the sign of the magnetoresistance, while in the strongly
localized regime it increases the localization length (e.g.,
by a factor of 4 in quasi-1D systems), thus affecting the
resistance by orders of magnitude [4]. The change in the
universality class manifested in level statistics also sup-
presses the conductance fluctuations in the weakly local-
ized regime (again by a factor of 4) [5].

In spite of these remarkable effects, there are just a few
studies of SOS in the integer quantum-Hall (IQH) regime
[6]. One possible reason is that in the presence of a strong
magnetic field, SOS is not expected to change the symme-
try of the Hamiltonian, and thus may not affect universal
quantities. A counterexample, however, exists in the
strongly localized regime, where SOS increases the local-
ization length even in the presence of a strong magnetic
field. Spin mixing induced by random magnetic field was
studied in Refs. [7,8] (as a specific model for SOS), and [9].
The main conclusion is that random Zeeman term causes
splitting of the spin-degenerate IQH transition, but does
not change its universality class. The critical exponent for
this kind of disorder then remains about 2:35� 0:02, the
accepted numerical value for the IQH transition [10,11].

In this work we study an electronic system in the IQH
regime, subject to random scalar and SOS potentials.
Semiclassical (SC) considerations anticipate a change in
the critical behavior of the IQH transition for short corre-
lation length of the SOS potential. These arguments are
then corroborated by numerical calculations.

Recall the SC approach to the IQH system in 2D [12]
which was later extended to treat the IQH in layered three-
dimensional systems [13]. In this description, electrons at
energy E follow skipping orbit trajectories around potential
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from Ec, the electron is confined on a cluster of typical size
(correlation length) �p. Near threshold, �p � jEc � Ej��p ,
where �p � 4=3 is the two-dimensional percolation expo-
nent. As one approaches Ec, clusters approach each other
near saddle points of the potential energy landscape.
While, classically, the electron cannot move from one
cluster to another, quantum mechanically it can tunnel
through the potential barrier. If E is close enough to Ec,
the potential barrier is close to an inverted parabola and the
tunneling probability is then proportional to exp���Ec �
E�	. The number of such saddle points through which
tunneling occurs in a system of length L is typically
L=�p. Since the transmission coefficient is multiplicative,
the conductance 	 (or the tunneling probability) through
the whole system is

	 � �e��Ec�E�	L=�p 
 e�L=�; (1)

with � � �Ec � E��� and � � �p � 1 � 7=3. The numeri-
cal estimate � � 2:35� 0:02 [11], which is somewhat
supported by experimental data [15], is in excellent agree-
ment with the result of the above argument (especially in
view of its crudeness).

Following Ref. [13], this argument can be generalized to
include SOS. If the spin-dependent part of the Hamiltonian
is slowly varying, one can carry out a local gauge trans-
formation, so that the spin points in the direction of the
local effective random magnetic field B�x; y� (generated by
the SOS potential) [7]. In the adiabatic limit, where the
spin-dependent potentials vary slowly in space, the prob-
lem separates into two independent IQH ones with
different critical energies, split by twice the typical mag-
netic field Beff 
 jhB�x; y�ij. Nonadiabaticity (short-range
correlations) leads to mixing between these two effective
spin-directions. Consequently, one may repeat the above
argument recalling that in this case Ec is shifted away by
Beff from the potential energy of the saddle point [13]. The
conductance 	so then behaves as

	so � �e�Beff 	L=�p 
 e�L=�so ; (2)
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FIG. 1. The ratio �L=L for L � 80, as a function of energy, for
two values of %, the potential correlation length, and for SOS
potential strength $so � 2. SOS leads to a splitting of the
quantum-Hall transition. Lower values of % cause an increase
in the localization length. In the inset we show �L=L in the
absence of SOS in the lowest two Landau levels. �L is maximal
at E � 0, the critical energy in this case.
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This SC argument then predicts that the localization
length critical exponent is equal to the two-dimensional
classical percolation exponent. The physical reasoning
behind the reduced localization exponent is simple: since
the potential landscape for the opposite spin-directions is
different, then, due to the random effective magnetic field,
an electron approaching a saddle point may ‘‘prefer’’ to flip
its spin (rather than tunnel through the saddle point), and
then continue to propagate semiclassically [16]. The
probability for such a Zener tunneling [17] depends on
the local potential gradient, and is exponentially close to
unity for strongly varying potentials [18]. In fact, since the
tunneling probability at the saddle-point energy is equal to
1=2 [19], one may expect that for short-correlated poten-
tials there will be an energy domain where this spin-flip
mechanism is dominant, leading to classical pecolation.
Thus, beside affecting the critical exponent, SOS might
shift the critical energy to higher values and defines a finite
spectral interval of classically extended states.

We next check these SC based predictions within a
specific, physically relevant model. Consider noninteract-
ing electrons (charge �e, mass m, and spin operator S) in
three dimensions ( � L=2 � x; y � L=2, �1 < z < 1)
subject to a magnetic field B � r�A � Bẑz [with A �
��By; 0; 0�], a random potential VR�x; y; z�, and an addi-
tional potential u�z� � u��z� that confines the electrons
near z � 0. Replacing p by � � p� e

cA in the Dirac
Hamiltonian for the large spinor component, we get,

H �
1

2m

2 � V �

1

�2mc�2
�� ���V�� ��� � gSzB;

(3)

with V � VR�x; y; z� � u�z�. The nonrandom part, H0 

1
2m
2 � u�z� � gSzB is diagonalized first, with eigenfunc-
tions �nk	�xyz� � Z0�z�hxyjnki � j	i. Here Z0�z� is the
normalized ground state of the operator p2

z=2m � u�z� (a
real even nodeless function of z), hxyjnki � Lnk�xy� is an
nth Landau level function of momentum k, and j	i is a two
component spin function. The number of degenerate
Landau functions Lnk�xy� is L2

2�‘2 where ‘ is the magnetic
length. Next we concentrate on the case where �0k"�xyz� is
degenerate with �1k#�xyz�, and SOS is highly relevant.
(Such a Landau level crossing has been recently realized
experimentally in AlAs samples [20,21].) Projection on the
subspace spanned by these two degenerate Landau levels is
justified when the Landau level and the Zeeman splittings
are much larger than VR. The projected Hamiltonian
is then Hij � h�ijVR � 1

�2mc�2 � ��V� ��j�ji with
i; j � 1; 2 � �0 "�; �1; #�. Expanding VR�x; y; z� near z �
0, and defining U0�x; y� 
 VR�x; y; 0�, Vso�x; y� 

V 0

R�x; y; 0�
R

Z0�z�zZ0
0�z�dz implies

H11 � h0kjUj0k0i; H22 � h1kjUj1k0i;

H12 � Hy
21 � i�h0kjVsoj0k0i � h1kjVsoj1k0i�;

(4)

where U contains, in addition to U0, all the spin-diagonal
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terms appearing in the Dirac Hamiltonian. The scalar
potential U thus plays the role of an effective random
magnetic field, while the SOS potential allows for random
spin flips.

The statistical properties of the potentials are deter-
mined by their strength $ and correlation distance %
(henceforth lengths and energies are expressed in units
of ‘ and �h!c), e.g., hVso�x; y�Vso�x

0; y0�i � $2
sof�x �

x0�f�y � y0�, with f�x� � �2�%2
so�

�1=2e�x2=2%2
so . A similar

relation holds for the scalar potential U�x; y�. Holding $ �
1 for U and varying % � %so (as both were generated by the
same potential VR) and $so, we generate and diagonalize
an ensemble of random Hamiltonians (4) for squares of
different sizes L � 40, 60, and 80. The localization length
of an eigenstate � is determined by [22]

�2
L��	 /

Z
y2j��x; y�j2dxdy �

 Z
yj��x; y�j2dxdy

!
2

:

(5)

By dividing the energy spectrum into bins and averaging
over N�L� disorder realizations [N�40� � 1000, N�60� �
300, N�80� � 150], we are able to obtain the energy de-
pendence of �L�E�. In Fig. 1 we plot �L�E�=L for two
values of %, for L � 80 and $so � 2.

The immediate conclusions drawn from the figure are
(i) �L�E�, which in the absence of SOS was maximal at
E � 0 (see inset), now has a maximum at two energies,
E � �Ec. This leads to a splitting of the IQH transition.
(ii) �L�E� increases as % becomes smaller. (iii) For small
%, and for �Ec < E < Ec, �L�E� is nearly constant and of
the order of the system size, in accordance with the SC
arguments.
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In order to determine whether this variation of �L�E� is
due, indeed, to a different critical behavior, we carry out
the usual scaling analysis—evaluate �L�E� for different
L’s, and collapse all the data onto a single plot after scaling
the system size by � (the L ! 1 localization length), by
setting L=�L�E� � F�L=��E�	. In Fig. 2 we plot L=�L�E�
for different L’s, for % � 1:725. At the critical energy E �
Ec, L=�L�E� does not change, and thus � diverges as E !
Ec. The scaling of all curves onto a single plot (Fig. 2,
inset) determines ��E�, and by fitting ��E� � �E � Ec�

��,
we obtain the critical exponent �.

Figure 3(a) depicts the derived best values of � as a
function of % [23] (for $so=$ � 2). For small % the critical
exponent is indeed very close to the expected SC value � �
�p � 4=3. When % increases, � eventually increases and
approaches the regular IQH value (open squares) consis-
tent with the SC picture. Concomitant with the decrease in
� with decreasing %, there is a shift of Ec to higher values,
again in agreement with the SC analysis. Figure 3 also
depicts our results for the exponent � in the absence of
SOS, where no change from the IQH value is noticed (filled
circles), and for a system where only the SOS correlation
length, %so, has been changed (keeping % � 1), for $so �
1 (diamonds) and $so � 2 (circles), demonstrating that the
change in critical behavior is solely due to the change in
%so. In order to minimize systematic errors we plot in
Fig. 3(b) the difference � � �QH demonstrating, as ex-
pected, a crossover from a value of �1 to 0 as % increases.
Our results also indicate that, unlike the SC prediction,
eigenstates with energies between �Ec are still localized
even for short-correlated potentials. This is most probably
due to quantum effects that tend to localize states in 2D.
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FIG. 2. The ratio L=�L as a function of energy for different
values of L, for $so � 2 and % � 1:725. The value of E where
the curves meet determines the critical energy. By scaling all
three curves near the critical energy (inset), one finds ��E�, from
which the critical exponent is determined (here � � 2:16).
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Thus, for short-range correlations, calculations suggest the
existence of a band of weakly localized states.

It is interesting to compare our results with previous
works. Lee [7] and Hanna et al. [8] studied a Hamiltonian
with a spin-dependent term H�r� � S, in which H�r� is a
random field that couples to the electron spin S. Their
conclusion is that, at least for random field which varies
smoothly in space, the quantum-Hall transition splits, but
the critical behavior remains unchanged. Indeed we
checked that within the H�r� � S model, even if the corre-
lation length of the random magnetic field decreases, the
critical behavior remains quantum-Hall-like (� ’ 2:35).
The difference between that model and ours might seem
surprising, since the model we use (4) looks very much like
a random field. However, the distinction becomes clearer in
Fig. 4, where we plot the density of states and �L�E�=L for
the two models. While for the H�r� � S model the density
of states splits into two peaks, indicating a splitting of the
spin-degenerate Landau level into two independent Landau
levels, in our model the density of states remains flat
around E � 0 (even though the critical points move away
from it), and thus the two effective spin-directions are still
strongly mixed. While the H�r� � S model has only a
unitary symmetry, our model, however, still obeys the
full symmetry one expects for SOS in the presence of a
magnetic field – time-reversal symmetry followed by re-
versing the (uniform) magnetic field. Thus, it may be that
the two models belong to different universality classes.
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FIG. 3. (a) The derived values of �, the localization length
critical exponent, as a function of %, the potential correlation
length, without spin-orbit scattering (filled circles) and with
spin-orbit scattering (empty symbols, see text). For small % the
exponent is close to �p � 4=3, the percolation correlation length
exponent, in agreement with the prediction of the SC theory,
with a crossover to the regular IQH transition (� ’ 2:35) for
large %. (b) The difference � � �QH demonstrating a crossover
from �1 to 0 as a function of the correlation length.
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FIG. 4. Comparison of our model [Eq. (4), solid curves] to the
H�r� � S model in the first (dotted curves) and the second
(dashed curves) Landau levels: �L�E�=L and density of states
for L � 80 and % � 1. While the critical energies in both models
split from E � 0, the density of states in our model remains flat
at E � 0, in contrast with the split density of states for the H�r� �
S model, allowing for stronger mixing of the spins and a possible
change in the critical behavior.
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To conclude, we have presented arguments and demon-
strated numerically that spin-orbit scattering in the integer
quantum-Hall regime may alter the critical behavior for
potentials with short-range correlations. The calculated
critical exponent agrees very well with the percolation
correlation length exponent, a value predicted by semi-
classical arguments. It would be interesting to study the
crossover between the two limits and to understand the
phase diagram of this model, including the role of Zeeman
splitting. In addition, the relevance of our model to the
intriguing experimental observations at the crossing of
Landau Levels [20] will be explored.
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