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Configurational Entropy of Network-Forming Materials
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We present a computationally efficient method to calculate the configurational entropy of network-
forming materials. The method requires only the atomic coordinates and bonds of a single well-relaxed
configuration. This is in contrast to the multiple simulations that are required for other methods to
determine entropy, such as thermodynamic integration. We use our method to obtain the configurational
entropy of well-relaxed networks of amorphous silicon and vitreous silica. For these materials we find
configurational entropies of 0:93kB and 0:88kB per silicon atom, respectively.
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A practical procedure to estimate s for such a long string is
to extract from it a large number m subsequences, each

will usually result in exactly the same list of n nearest
particles and thus the same graph. Consequently, there is an
upper bound to the number m of random positions that one
In materials such as vitreous silica, amorphous silicon,
or vitreous ice, the structure is determined by the set of
bonds (covalent or hydrogen) between particles. In this
manuscript, we will refer to these materials as network-
forming materials. While the local environment of each
particle is usually governed by strict rules, the bonded
network can show a wide variety of different topologies.
The focus of this work is to present a method to estimate
the number of topologies that a network-forming material
can take, or more precisely, its configurational entropy.

The common computational procedure to estimate the
entropy S at temperature T2 is to measure the energy E as a
function of temperature and then to integrate from a tem-
perature T1 at which the entropy is known:

S�T2� � S�T1� �
Z T2
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This requires sampling a large number of different net-
works, and can therefore be applied only to systems with
fast dynamics. In this work, we present a completely differ-
ent approach to estimate the entropy, based on information
theory [1], and related to the work of Schlijper et al. who
determined the entropy of the Ising and three-states Potts
models [2].

One important concept in information theory is the
Shannon entropy. It is commonly explained in the context
of a string of n bits. In this case, the Shannon entropy H�n�
is defined as

H�n� � �
X
i

p�i� log2p�i�; (2)

where the index i runs over all possible bit sequences of
length n and p�i� is the probability of sequence i occurring.
A related concept is the entropy density s of a large string
of N bits:

s � lim
n!1

�H�n� 1� �H�n�	: (3)
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containing n bits with n 
 N. An estimate for the proba-
bilities p�i� is then given by

p�i� �
fi
m
; (4)

where fi equals the number of times subsequence i was
observed. The estimates for p�i� in combination with
Eq. (2) yield H�n�. The entropy density s is then obtained
using Eq. (3). Usually, the limit n ! 1 converges rapidly
and even moderate values of n are sufficient to predict s
accurately.

For systems in equilibrium it is easily shown that the
Shannon entropy and the thermodynamic entropy of Eq. (1)
are equivalent, apart from a factor of ln�2�. In this case, the
probabilities p�i� are simply the Boltzmann weights:
p�i� � exp���Ei�=Z, where � is the inverse temperature,
Z the partition function, and Ei the energy of state i. In the
present work we show how information theory can also be
used to obtain the configurational entropy of network-
forming materials. The method we present can be applied
to any network provided (i) the atomic coordinates are
known and (ii) a list of bonds is supplied or can be con-
structed—for instance based on a distance criterion—
which uniquely determines the network.

To determine the configurational entropy of a network-
forming material we choose a large number m of random
positions in the simulation cell. For each position we find
the nearest n particles and identify the graph formed by the
bonds connecting these particles. We then assign a label to
this graph, based on the graph automorphism [3]: different
labels are assigned to sets of atoms with different bonding
topologies, while a renumbering of the atoms does not
yield a different label. We count the number of times a
graph is observed and use Eq. (4) to estimate its corre-
sponding probability of occurrence. These probabilities are
fed into Eq. (2) to obtain H�n�.

A small displacement of one of these random positions
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should choose in a simulation cell containing N particles.
An estimate of this upper bound is obtained from the
typical distance over which a random position can be
displaced without altering the selected graph. From this
we obtained as upper bounds m � 1:6nN and m � 3:4n2N
for two-dimensional and three-dimensional networks,
respectively.

A related side effect of choosing random positions is that
the number of different graphs observed gets multiplied
with a factor proportional to nd�1. This results in a correc-
tion to H�n� of the form g�n� � �d� 1� ln�n�, with d the
spatial dimension of the network. The latter can be verified
in crystalline networks where the configurational entropy
is zero.

Graphs with a probability p�i� smaller than 1=m will
likely be observed only once, if at all. This finite-size effect
grows with n, when the selected graphs become very
complex. To monitor the impact of this effect, we record
the quantity H1�n�, defined as the contribution to H�n� of
the topologies observed once. We reject the measurements
for which H1�n� exceeds 1% of H�n�. Furthermore, we
observed that the quantity H�n� � c �H1�n�=H�n� con-
verges much faster with increasing m than H�n� itself,
with a suitable choice of c. We therefore use this extrapo-
lated value as our best estimate for H�n�.

In Fig. 1 we show the typical behavior of the corrected
Shannon entropy Hc�n� 
 H�n� � g�n� as a function of
graph size n. The entropy follows from Eq. (3). The rapid
convergence of the limit is demonstrated by the linear
behavior of Hc�n� for intermediate n shown in Fig. 1 by
the dashed line. The entropy per atom equals the slope of
this line. In Fig. 1 we have marked with circles the points
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FIG. 1. Typical behavior of the corrected Shannon entropy
Hc�n� in units of kB as a function of graph size n; crosses
(circles) mark measurements for which H1�n� contributes less
(more) than 1% to H�n�. The dashed line is a straight-line fit to
the crosses, starting from n � 10. The slope of this line is our
estimate for the configurational entropy per atom s. These data
are obtained from a two-dimensional sillium configuration con-
taining 20 000 atoms.
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for which H1�n� exceeds 1% of H�n�. These points suffer
from finite-size effects and should not be used.

To test the usefulness of the above procedure, we apply it
to the sillium model [4], one of the prototype models to
study network-forming materials. In this model, tuned for
amorphous silicon, an explicit list of covalent bonds be-
tween pairs of Si atoms is kept, with the property that each
Si atom is bonded to four neighboring atoms. The energy is
described by the Keating potential, which contains a qua-
dratic penalty for bond-length deviations from the crystal-
line distance of 2.35 Å, and a quadratic penalty for bond-
angle deviations from the tetrahedral angle �0 �
arccos��1=3�. The list of bonds determines the atomic
positions uniquely, since in this model the energy is mini-
mized at all times. As a result, the phase space of this
model is limited to a finite number of 3N-dimensional
points. The evolution of the network consists of a large
number of random bond transpositions, each accepted with
the Metropolis probability:

P � min

�
1; exp

�
Eb � Ef

kBT

��
; (5)

where T is the temperature and Eb and Ef are the total
(minimized) energies of the system before and after the
proposed bond transposition. A typical sillium network is
shown in Fig. 2. Our networks are generated as described
in Refs. [5,6], in which a number of algorithmic improve-
ments have been proposed as compared to the original
algorithm of Wooten, Winer, and Weaire.
FIG. 2 (color online). A three-dimensional sillium network.
Each particle is fourfold coordinated but no long-range order
exists.
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To verify the validity of the information theory approach
we first turn to a two-dimensional version of the sillium
model. Contrary to the three-dimensional sillium model,
the dynamics here does not lead to glassy states. This
allows us to determine the entropy in equilibrium using
both the standard approach—via Eq. (1)—as well as
information theory. In this two-dimensional model, atoms
are threefold coordinated and the ideal bond angle is 120�;
a typical configuration is shown in Fig. 3.

We simulate a two-dimensional sillium network con-
taining 1008 atoms for a number of (physically interesting)
temperatures ranging from kBT � 0:15 eV to kBT �
0:60 eV using periodic boundary conditions in both direc-
tions. At each temperature we bring the system to equili-
brium with 100 attempted bond transpositions per atom.
Next, 20 snapshots of the network are stored; each sepa-
rated by five attempted bond transpositions per atom. From
these snapshots the average energy and the Shannon en-
tropy are obtained. In determining the Shannon entropy we
draw clusters from each snapshot simultaneously. After the
simulation has covered the entire temperature range, the
entropy is also obtained from the average energy measure-
ments and Eq. (1).

Figure 4 shows the configurational entropy as a function
of temperature where the standard thermodynamic ap-
proach is compared to information theory. There appears
to be a phase transition near kBT � 0:37 eV shown by the
sudden jump in entropy. The remarkable feature of the
displayed results is the overall good agreement between
the two methods, even near the phase transition. This is in
agreement with related work on the Ising model [2], in
which also surprisingly little numerical problems were
encountered close to the critical point.
FIG. 3. A two-dimensional sillium network. Each particle is
threefold coordinated, with a preferred bond angle of 120�.
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Next, we use information theory to determine the con-
figurational entropy of a well-relaxed three-dimensional
sillium network containing 20 000 atoms. This network
was generated using the improved Wooten, Winer, and
Weaire algorithm [5,6]. The Keating energy of this net-
work is 0.286 eV per atom; the standard deviation in the
mean bond angle is 9.63�. Structural and electronic proper-
ties of this network are in excellent agreement with experi-
mental properties of amorphous silicon [6]. Applying our
method to this model, we obtain a configurational entropy
of 0:93kB per atom.

By construction, sillium networks do not contain coor-
dination defects. To study the effect of defects, we gener-
ated a number of networks in which coordination defects
were introduced by removing from the explicit list of
bonds the longest ones. The method works equally well
for such networks in which the atomic coordination num-
ber varies significantly. We observed that, as long as less
than 2% of the atoms are undercoordinated, the configura-
tional entropy does not change significantly.

The (classical) vibrational entropy is obtained from the
eigenvalues of the dynamical matrix and for this network
was found to be 3:07kB per atom. For the crystalline phase
the configurational entropy is zero and only the vibrational
entropy contributes to the entropy, in this case 3:18kB per
atom. The difference in entropy between the crystalline
and amorphous phases of silicon is therefore estimated to
be 0:82kB per atom.

The energy difference between the crystalline and amor-
phous phases of silicon was recently determined by Biswas
[7] using tight binding, who found an energy difference of
0.18 eV per atom which is in good agreement with values
reported in Ref. [8].
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FIG. 4. Diagram showing the configurational entropy per atom
in units of kB as a function of temperature in eV for a two-
dimensional sillium network consisting of 1008 atoms. The solid
curve shows the entropy per atom as obtained using the standard
thermodynamic approach; crosses show the entropy per atom
obtained using information theory.
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With the above estimates for the differences in energy
and entropy we can calculate the transition temperature Tc,
defined as the temperature where the free energy difference
between the crystalline phase and the amorphous phase
changes sign. It is given by

Tc �
�E
�S

; (6)

where �E and �S are the energy difference and the
entropy difference between the crystalline and the amor-
phous phase, respectively. Substitution of our estimates for
�E and �S into Eq. (6) yields Tc � 2547 K. This tem-
perature compares remarkably well with the value of Tc �
2500 K as inferred from calorimetric experiments [9], and
is well above the melting point of silicon. It confirms that
the amorphous phase is not thermodynamically stable at
any temperature.

As a final application of our method we determine the
configurational entropy of vitreous silica. The structure of
this material is formed by covalent bonds between silicon
atoms and oxygen atoms. Barring rare defects, each silicon
atom is bonded to four oxygen atoms and each oxygen
atom is bonded to two silicon atoms. We generate a silica
network containing 3000 atoms (with periodic boundary
conditions) in a spirit similar to amorphous silicon, but we
replace the Keating potential by the one of Tu and Tersoff
[10,11]. The resulting network is then quenched with the
more realistic BKS potential [12], using parameters as
described in Ref. [13]. The BKS energy per silicon atom
of the quenched network is 0.13 eV above that of the
�-cristobalite structure. For comparison, samples prepared
by molecular dynamics typically yield a much larger en-
ergy difference of 0.30 eV. This clearly demonstrates that
our network is well relaxed. After quenching with the BKS
potential, the atoms remain perfectly coordinated: the sil-
icon-oxygen bonds are easily reconstructed from a distance
criterion and the silicon-oxygen radial distribution func-
tion. For our network, the average O-Si-O bond angle is
109.43� with a standard deviation of 4.40�; the average Si-
O-Si bond angle was found to be 150.85� with a standard
deviation of 12.09�.

To estimate the configurational entropy per silicon atom
in well-relaxed vitreous silica, we used the above network
and replaced each oxygen atom plus its two bonds by a
single silicon-silicon bond. Next, we applied the informa-
tion-theoretic method described earlier on this network and
076405-4
found for the configurational entropy 0:88kB per silicon
atom. Given the limited size of this sample we estimate that
the actual entropy might be up to 10% larger. Ignoring the
difference in vibrational entropy, as well as the entropy
contribution of possible multiple oxygen positions, we
obtain for the transition temperature of vitreous silica
Tc � 1700 K.

In summary, we have developed a computationally effi-
cient method to determine the configurational entropy of
network-forming materials. For well-relaxed samples of
amorphous silicon and vitreous silica, we find for the
entropy per silicon atom 0:93kB and 0:88kB, respectively.
In future research, we hope to extend the applicability of
this method to other disordered materials such as colloidal
systems and metallic glasses.
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