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Critical Local-Moment Fluctuations, Anomalous Exponents, and !=T Scaling
in the Kondo Problem with a Pseudogap
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Experiments in heavy-fermion metals and related theoretical work suggest that critical local-moment
fluctuations can play an important role near a zero-temperature phase transition. We study such
fluctuations at the quantum critical point of a Kondo impurity model in which the density of band states
vanishes as j�jr at the Fermi energy (� � 0). The local spin response is described by a set of critical
exponents that vary continuously with r. For 0< r < 1, the dynamical susceptibility at the critical point
exhibits !=T scaling with a fractional exponent, implying that the critical point is interacting.
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scription. This requires one to understand the precise na-
ture of the critical local mode that characterizes the
destruction of the Kondo effect. The first step towards

J > 0 causes the impurity moment to be quenched at
temperature T � 0 [10]. With a pseudogap (r > 0), by
contrast, quenching occurs only for J > Jc > 0 [14]. The
A number of stoichiometric (or nearly stoichiometric)
heavy-fermion metals exhibit non-Fermi-liquid behavior
when tuned to the vicinity of a magnetic quantum critical
point (QCP) [1–6]. An important clue as to the nature of the
quantum criticality has come from neutron scattering ex-
periments [5,6] near the magnetic QCP of CeCu6�xAux. At
the (rather small) critical Au concentration, xc � 0:1, the
dynamical spin susceptibility is highly unusual in two
respects: First, it satisfies !=T scaling. Second, the fre-
quency and temperature dependence obeys a fractional
power law, described by the same anomalous exponent
over essentially the entire Brillouin zone. There are indi-
cations that the stoichiometric system YbRh2Si2 behaves
similarly [3]. These experiments directly suggest [5–9] that
the fluctuations of the individual local moments are also
critical. While the standard Kondo behavior of local mo-
ments in simple metals has been studied extensively over
the past four decades and is well understood [10], the
physics of critical local-moment fluctuations is largely
unexplored. It is therefore highly desirable to identify
models that are amenable to controlled theoretical study.

Further motivation for studying critical local-moment
fluctuations comes from related theoretical work. We have
recently shown [11] that competition between the Kondo
and Ruderman-Kittel-Kasuya-Yosida interactions in a
Kondo lattice model generates a new class of QCP, which
we argue explains the aforementioned experiments in
heavy fermions. Here, not only are the long-wavelength
spin fluctuations critical, but so also are the local-moment
fluctuations; the weight of the Kondo resonance goes to
zero at the QCP. The existence of critical local fluctuations
distinguishes such a ‘‘locally critical point’’ from the
standard picture based on a spin-density-wave transition
[12,13]. To fully elucidate the properties of the locally
critical point, one must construct a Ginzburg-Landau de-
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this goal is to develop an intuition about critical local-
moment fluctuations in simpler models.

This paper addresses just such a model: the single-
impurity Kondo problem with a power-law pseudogap.
The model has a quantum phase transition at a finite
Kondo coupling [14] . We show that the QCP exhibits
critical local-moment fluctuations and an associated de-
struction of the Kondo effect very similar to those present
at the locally critical point of the Kondo lattice; the local
susceptibility displays !=T scaling with a fractional ex-
ponent. The many-body spectrum of this model can be
calculated exactly, an important virtue which should sig-
nificantly aid the identification of the critical local mode.

The Kondo model for a single spin- 12 impurity coupled
to a conduction band is described by the Hamiltonian,

H K �
X
k;�

�kc
y
k�ck��

J
2
S�

X
�;�0

cy0����0c0�0

�V
X
�

cy0�c0�; (1)

where S is the impurity spin operator, cy0� creates an
electron with spin z component � ( � 	 1

2 ) at the impurity
site, and �i��0 (i � x; y; z) is a standard Pauli matrix. J is
the Kondo exchange coupling, while V parametrizes non-
magnetic potential scattering from the impurity site.

In the power-law version of this model, the conduction
band is described by the (oversimplified) particle-hole-
symmetric density of states [15],

�
�� �
�
�0j�jr for j�j � 1
0 for j�j > 1:

(2)

In a metal (r � 0), any antiferromagnetic Kondo coupling
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FIG. 1. Schematic phase diagram showing the vicinity of the
quantum critical point of the pseudogap Kondo model.

TABLE I. Properties of the symmetric critical point, obtained
from NRG calculations. See the text for definitions of the
exponents �, �, �, and x (all determined using a band discre-
tization � � 9), and of the ratio R (calculated for � � 3).
Parentheses surround the estimated nonsystematic error in the
last digit (equal to 1 where omitted).

r � � 1=� x R

0.1 10.63(2) 0.005 65 0.9888 0.040(3)
0.15 0.1033(2) 7.476(2) 0.013 67 0.9730
0.2 0.1600(2) 5.899 0.026 45 0.9485 0.17
0.3 0.3548(2) 4.441 0.0740 0.8622
0.4 0.9140 4.018(3) 0.1852 0.6875 0.54
0.45 1.982(5) 4.335(3) 0.3134 0.5228
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strong-coupling (i.e., J > Jc) and weak-coupling (J < Jc)
properties of the power-law Kondo model have been
studied extensively [14,16–20]. Here, instead, we study
the critical behavior at J � Jc
r; V� using numerical cal-
culations and controlled analytical approximations. (The
model appears not to be integrable [21]; it also lacks
conformal invariance.) This paper supersedes an earlier
preprint [22], which discussed only static critical proper-
ties, and focused on the large-N limit of Eq. (1). More
recent work [23] has addressed QCPs in multichannel
Kondo problems with a pseudogap.

Under conditions of strict particle-hole symmetry [V �
0 in Eq. (1)], a symmetric critical point (SCP) separates the
weak- and strong-coupling regimes for all 0< r< 1

2 ; the
strong-coupling regime and the SCP both vanish for r 
 1

2
[17]. The SCP is also encountered away from particle-hole
symmetry for 0< r � r� � 0:375; for r > r�, however,
there is an asymmetric critical point (ACP) distinct from
the SCP [18]. In all cases, the transition can be schemati-
cally represented as shown in Fig. 1.

Local vs impurity susceptibility.—Our analysis begins
with the observation that the quantum critical behavior
reveals itself, not in the response to a uniform magnetic
field H, but rather in that to a local magnetic field h
coupled solely to the impurity [24,25]. These responses
are measured, respectively, by the static impurity suscept-
ibility �imp� � @2Fimp=@H2jH�h�0, and the static local
susceptibility �loc� � @2Fimp=@h2jH�h�0, where Fimp is
the impurity contribution to the free energy. Numerical
renormalization-group (NRG) results [17,18] indicate
that, whereas limT!0 T�imp undergoes a jump as J passes
through Jc, limT!0 T�loc goes continuously to zero as the
critical coupling is approached from below, and
limT!0 T�loc�0 for all J > Jc. (The same distinction
also holds in the large-N limit [22].)

Static critical properties.—Given that the local field h
(rather than the uniform field H) acts as a scaling variable,
we define exponents �, �, �, and x, describing the critical
behavior of the local susceptibility and the local-moment
amplitude Mloc � hSzi� � @Fimp=@hjH�0:

Mloc
J < Jc; T � 0; h � 0� / 
Jc � J��;

�loc
J > Jc; T � 0� / 
J� Jc���;

Mloc
J � Jc; T � 0� / jhj1=�;

�loc
J � Jc� � CstaticT�x:

(3)

Using a generalization [18] of Wilson’s NRG method
[26] to treat the density of states in Eq. (2), we have
computed Mloc and �loc for r between 0.1 and 2. For 0<
r < 1, we find that Mloc and �loc obey Eqs. (3) near both the
SCP and the ACP, establishing the continuous nature of
these phase transitions [14]. For r > 1, by contrast, Mloc

undergoes a jump at the transition.
Table I lists exponents for the SCP, along with their

estimated nonsystematic (numerical-rounding and slope-
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fitting) errors. Data at J � Jc exhibit power laws over at
least five decades of h and T (e.g., see �loc vs T in Fig. 2),
allowing precise determination of � and x. The uncertainty
in � and � is greater because rounding error cuts off the
power laws as J approaches Jc. Most runs were performed
for an NRG discretization parameter � � 9, retaining all
states within an energy 50T of the ground state [25]. To
estimate the systematic discretization errors, a few runs
were performed using a value � � 3 lying closer to the
continuum limit (� � 1) but requiring much more com-
puter time. Critical exponents computed for � � 3 and
� � 9 only narrowly fail to agree within their estimated
nonsystematic errors, so we believe that the � � 9 expo-
nents approximate the continuum values quite well.
Restricting the power-law form of �
�� to a finite region
around the Fermi energy to better approximate real sys-
tems does not alter the critical exponents.

The exponents listed in Table I have nontrivial r depend-
ence. To better understand these exponents, we show that
they satisfy certain hyperscaling relations, which can be
derived in a standard fashion. We expect the singular
component of the free energy to take the form [25]

Fimp � Tf
jJ�Jcj=T
a; jhj=Tb�: (4)

Using Eq. (4), one readily finds that � � 
1� b�=a, � �

2b� 1�=a, � � b=
1� b�, and x � 2b� 1. These ex-
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TABLE II. Exponents at the asymmetric critical point, from
NRG calculations using a discretization parameter � � 9. The
symbols are explained in Table I.

r � � 1=� x

0.4 0.58 3.12 0.1570(2) 0.7285(5)
0.6 0.188 1.41 0.1168 0.7905(5)
0.8 0.077(2) 1.108(4) 0.0645(7) 0.8795(5)
0.9 0.039(2) 1.025(3) 0.035 0.928(2)
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pressions lead to a pair of hyperscaling relations among the
critical exponents, e.g.,

� � 
1� x�=
1� x�; � � �
1� x�=
2x�: (5)

In all cases, the exponents listed in Table I satisfy the
hyperscaling relations to the accuracy of our calculations.

Table II lists critical exponents at the ACP. Comparison
with Table I shows that, within their range of coexistence
(0:375 & r < 1

2 ), the SCP and ACP have different expo-
nents. For all r < 1, the hyperscaling relations, Eqs. (5), are
obeyed to within estimated errors. It proves difficult to
determine the critical behavior for r � 1, where there are
logarithmic corrections to scaling [16]. For 1< r< 2,
Mloc is no longer critical, but �loc is described by exponents
� � 2� r and x � 1, values that are consistent with
Eq. (4) if a � 1=
2� r� and b � 1.

Dynamical critical properties.—We have also computed
the imaginary part of the dynamical local susceptibility,
�00
loc
J�Jc; !; T�. Figure 2 shows some of our zero-

temperature results at the SCP. The low-frequency NRG
data at both the SCP and the ACP fit the form

�00
loc
J�Jc; !; T�0� � Cdynamicj!j�y sgn!: (6)

For 0<r<1, we find y � x to within numerical error, an
equality that is consistent with a scaling form: �loc
J�
FIG. 2. �loc
!�0� vs T and �00
loc
T�0� vs ! at the symmetric

critical point: NRG results for � � 3, r � 0:1 and 0.4 [25]. For a
given r, �loc
! � 0; T � 1� and �00

loc
j!j � 1; T � 0� are de-
scribed by equal exponents, x � y.
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Jc; !; T� � T�xX
!=T�. Such an !=T scaling cannot hold
for 1<r<2, where we find y � � < x.

For a given r between 0 and 1, the data for �00
loc
J�

Jc; !; T� collapse onto a single function of !=T, as illus-
trated in Fig. 3(a). This does not conclusively establish
!=T scaling because the NRG method is unreliable in the
regime j!j & T. For small r, however, we can use a differ-
ent approach to confirm the existence of scaling.

For small r, the local spin-spin correlation function can
be calculated algebraically by a procedure analogous to the
standard � expansion [27]: Since the critical coupling is
small, the fixed point is accessible via an expansion in
�0Jc � r. The unperturbed reference point (�0Jc � r �
0) describes the standard Kondo problem, so the perturba-
tion series for �loc at the critical point contains logarithmic
singularities. To leading logarithmic order, we find
�loc
�� �

1
4 �1� 
�0Jc�

2 ln
%T�0= sin%T���, where �0 �
�0. This leads to

�loc
�� �
1

4

�
%T�0
sin%T�

�
&
; & � 
�0Jc�2; (7)

and to a dynamical spin susceptibility having the asymp-
totic low-energy, low-frequency form,

�loc
!; T� �
�&0 sin
%&=2�

2
2%T�1�& B
�
&
2
� i

!
2%T

; 1� &
�
; (8)

B being the Euler beta function.
It follows from Eq. (8) that, for small r, the static local

susceptibility and the imaginary part of the local suscept-
ibility at T � 0 have the forms specified by Eqs. (3) and
(6), respectively, with exponents
FIG. 3. Comparison between NRG and small-r results for the
symmetric critical point. (a) !y�00

loc
J�Jc� vs !=T [25]: NRG
results for r � 0:4 and T=D � 10�7, 10�6, 10�5, and 10�4

(symbols) and the prediction of Eq. (8) (solid line). (b) Ex-
ponent 1� x vs r: NRG data from Table I (symbols) and the
prediction of Eq. (9), in the form of a spline fit (solid line)
through numerical values for 
�0Jc�

2, extrapolated to the con-
tinuum limit � � 1 (see [18]).
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x � y � 1� & � 1� 
�0Jc�2; (9)

and a universal (cutoff-independent) amplitude ratio

R �
Cdynamic

Cstatic
�

%2�& $
1�&=2�
2& sin
%&=2�$
1�&�$
&�$
&=2�

:

(10)

These results can be compared with our NRG data: (i)
As mentioned above, we find that y � x is obeyed to the
accuracy of our calculations for all 0< r< 1. (ii) The
calculated �loc obeys Eq. (8) within the range ! � T
where the NRG method is reliable [see Fig. 3(a)]. (iii) The
numerical values of x agree remarkably well with the
small-r result x � 1� 
�0Jc�2, even when r (and, hence,
�0Jc) is not small [see Fig. 3(b)]. (iv) The R values in
Table I fit Eq. (10) to within 25%, a reasonable level of
agreement given that the systematic errors in prefactors
and critical couplings computed using the NRG are gen-
erally greater than the errors in critical exponents.

One of our key conclusions is that the dynamical spin
susceptibility satisfies!=T scaling, as shown by Eq. (8) for
small r, and supported by the equality of the exponents x
and y for all 0< r< 1. This has important implications for
the field-theoretical description of the QCP. It indicates
that a suitably defined relaxation rate is linear in tempera-
ture, which can come about only if the Ginzburg-
Landau action, written in terms of the critical local modes,
contains nonlinear couplings that are relevant in the
renormalization-group sense [28] . The fixed point must
be interacting. For r > 1, the relaxation rate ( / Tx=y) is
superlinear, which is consistent with a Gaussian fixed
point.

Finally, we note that the r � 1 pseudogap Kondo prob-
lem is also important for impurities in high-Tc supercon-
ductors [20,29]. The quantum critical regime will likely
become accessible via scanning tunneling microscopy
once measurements are extended to higher temperatures.

In summary, we have combined numerical and analyti-
cal approaches to obtain a consistent picture of the critical
properties of the Kondo problem with a conduction-elec-
tron density of states proportional to j�jr. At the QCP, the
weight of the Kondo resonance has just gone to zero; as a
result, the local-moment fluctuations are critical. In addi-
tion, the dynamical spin susceptibility at the QCP displays
!=T scaling with an anomalous exponent for all
0< r< 1. These features parallel those of the locally
critical point in the Kondo lattice [11]. Thus, the pseudo-
gap Kondo model provides a testing ground for studying
critical local-moment fluctuations of the type seen in cer-
tain heavy-fermion metals [3–6]. The exact many-body
spectrum of this impurity model can be calculated using
NRG techniques, which should prove particularly useful in
identifying the proper local modes for characterizing the
QCP. This, in turn, should shed much new light on the
Ginzburg-Landau description of the locally critical point of
076403-4
the Kondo lattice. These important issues are left for future
work.
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