
VOLUME 89, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 12 AUGUST 2002
Robustness of the Van Hove Scenario for High-Tc Superconductors
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The pinning of the Fermi level to the Van Hove singularity and the formation of flat bands in the two-
dimensional t� t0 Hubbard model is investigated by the renormalization group technique. The ‘‘Van
Hove’’ scenario of non-Fermi-liquid behavior for high-Tc compounds can take place in a broad enough
range of the hole concentrations. The results are in qualitative agreement with the recent angle-resolved
photoemission spectroscopy data on La2CuO4.
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This ‘‘Van Hove scenario’’ (for a review of early con-
siderations, see, e.g., Ref. [14]) seems to be very attractive

k i

with the bare electron spectrum
The nature of the normal state and the mechanisms of
superconductivity in copper-oxide high-Tc compounds are
still a subject of hot discussions [1–6]. A number of
experimental data on transport properties and angle-
resolved photoemission spectroscopy (ARPES) give evi-
dence of a non-Fermi-liquid (NFL) character of the normal
state in an underdoped regime and, as a consequence, of a
strict confinement of current carriers in the CuO2 planes.
The latter results in an anomalously weak sensitivity of
normal-phase and superconducting properties to the im-
purities outside the planes, hopping character of the trans-
port along c axis, etc. Anderson [1] has put forward the
idea that a 2D system can demonstrate a NFL behavior at
arbitrarily small interelectron repulsion U owing to a finite
phase shift at the Fermi energy. In this scenario, the con-
finement of current carriers is explained by ‘‘quantum
protection’’ [2] owing to charge-spin separation and inco-
herent (non-quasiparticle) character of electron (or hole)
motion. However, theoretical understanding of a NFL state
in quasi-2D electron systems turned out to be very difficult.
Modern field-theoretical investigations [7] show that
such a state probably does not occur in general 2D and
quasi-2D cases.

At the same time, peculiarities of the electron spectrum
can lead to NFL behavior. In the presence of Van Hove
singularities (VHS) near the Fermi level, the marginal
Fermi-liquid [8] or NFL behavior [9] can be naturally de-
rived. Already in the leading order of the perturbation
theory in U the marginal dependences of the electron
scattering rate and specific heat take place, Im
�kF; "� /
j"j lnj1="j at j"j � j�j and 	C / T ln3�t=max�j�j; T�	,
and the resistivity demonstrates the behavior � /
T ln2�t=max�j�j; T�	 [10] (T is the temperature, " is the
energy, � is the chemical potential calculated from VHS,
and t is the hopping integral). Closeness of the VHS to the
Fermi level results in a 1D-like behavior of the perturba-
tion expansion [11], but does not lead to the Luttinger-
liquid fixed point since the system turns out to be unstable
with respect to formation of magnetic or superconducting
ground state [11–13].
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since various data demonstrate the closeness of VHS to the
Fermi level in high-Tc compounds at optimal doping or
pressure. Recent ARPES data demonstrate that the Fermi
level of La2�xSrxCuO4 is close to VHS in the range x 

0:20–0:30 [15], which corresponds to an overdoped re-
gime. One of the two bands, which occur due to bilayer
splitting (antibonding band) in the Bi2212 system, is also
close to VHS [16]. A significant and still unsolved question
is why the Fermi level should be close to VHS in a broad
doping range. Although some considerations were per-
formed [17,18], they did not take into account the renorm-
alization of the electron spectrum, e.g., the formation of the
flat part of the spectrum, which should change substantially
the results of these approaches.

The flattening of the spectrum was first studied theoreti-
cally for a single hole in an antiferromagnetic background
[19]. The flat region leads to some peculiarities of electron
properties near the metal-insulator transition [20], in par-
ticular, to the pinning of the chemical potential. While the
above-mentioned approaches describe correctly the situ-
ation at small hole doping (the doped Mott insulator re-
gime), these approaches meet with difficulties near the
optimal doping where the concentration of holes is not
small. In this Letter we argue that besides antiferromag-
netic fluctuations there is another factor which results in
occurrence of the flat part of electron spectrum, namely, the
critical fluctuations that occur near the Van Hove band
filling. We also reconsider the issue of the pinning of the
Fermi surface to Van Hove singularities by proposing a
new scheme of renormalizations of the energy- and mo-
mentum-dependent electron Green’s function. We show
that the pinning of the Fermi surface to VHS is a universal
feature of 2D systems which is connected with the forma-
tion of a flat region of the electron spectrum near the ��; 0�
point. Both the phenomena, the pinning and the flattening,
will be described within the same renormalization group
(RG) approach.

We start from the t� t0 Hubbard model on the square
lattice,

H 

X
"kc

y
k�ck� �U

X
ni"ni#; (1)
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"k 
 �2t�coskx � cosky� � 4t0�coskx cosky � 1� ��:

Hereafter we assume t > 0, t0 < 0 (which is the case for
hole-doped systems), 0 � jt0j=t < 1=2. For arbitrary t0=t
this spectrum contains VH singularities connected with the
points A 
 ��; 0�, B 
 �0; ��. The chemical potential �
measures the distance between VHS and the Fermi energy,
so that at � 
 0 VHS lie at the Fermi level. We suppose
that t0=t is not too small, and therefore the Fermi surface is
not nested. It was argued [9,12,13] that, provided that the
band filling is close to the Van Hove one, the vicinity of the
Van Hove points gives a dominant (most singular) contri-
bution to electronic and magnetic properties. Thus we can
use the expansion of the spectrum near A�B� Van Hove
points

"Ak 
 �2t�sin2’k2x � cos2’k2y� ��; (2)

"Bk 
 2t�cos2’k2x � sin2’k2y� ��; (3)
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where kx 
 �� kx, ky 
 �� ky, ’ is the half of the
angle between asymptotes at VHS, and 2’ 
 cos�1�
��2t0=t�. The chemical potential � is obtained from the
electron concentration n 


R
0
��t ��"�d", with ��"� being

the renormalized density of states and � the ultraviolet
cutoff. For the spectrum (2) we have the bare density of
states

�0�"� 
 ��2
���������������������
t2 � �2t0�2

q
��1 ln��t=j"��j�; (4)

which diverges logarithmically at " 
 ��. We show that
the renormalized density of states contains a much stronger
divergence, which results in the pinning of the Fermi sur-
face to VHS. To this end we calculate the electron self-
energy 
�k; "� for k near the VH point kVH 
 ��; 0�. In
the second order in U this contains three contributions that
arise from intermediate quasimomenta which are close to
the same or another VH point (cf. Refs [9,10]),

�2��k; "� 


P
3
i
1 
i�k; "�,
Re
1�k; "� 
 ��2g0= sin2’�
2�A1"� B

x
1
~kk2x � B

y
1
~kk2y	 ln

2��=�� ;

Re
2;3�k; "� 
 �2�g0= sin2’�2�A2;3"� Bx2;3~kk
2
x � 2C2;3

~kkx~kky � B
y
2;3
~kk2y	 ln��=�� ;

(5)

2
where ~kkx 
 kx sin’, ~kky 
 ky cos’, g0 
 U=�4� t� is
the dimensionless coupling constant, � 
 max�k2x; k

2
y;

j"j=2t; j�j=2t�, A1 
 ln2, and Bx1 
 �By1 
 1=2� ln2.
The analytical expressions for the coefficients Ai, Bi,
and Ci with i 
 2; 3, which are some regular functions
of t0=t, will be published elsewhere. We perform a sum-
mation of logarithmically divergent terms which depend
on � 
 �1=2� ln��=�� within the RG approach. To sepa-
rate effects of the electron spectrum renormalization and
multiplicative renormalization of the Green’s function,
we perform the renormalization procedure in two steps.
At the first step we introduce the k-dependent mass
renormalization factors Zami��� (a 
 x; y), and at the
second step all the other divergences are absorbed into
the energy-dependent quasiparticle residue Z�"�,

G�k; "� 

Z�"�

"� 2tZ�1
xm���~kk

2
x � 2tZ�1

ym���~kk
2
y � ~�� � i��"�

;

(6)

where ~�� 
 �� Re
�kVH;��� is the renormalized
chemical potential, and the damping ��"� 

Z�"�Im
�kVH; "� is determined by analytical continuation.
The coefficients Zam��� 
 Zam1���Z

a
m2���Z

a
m3��� satisfy

the RG equations

d lnZam1���=d� 
 �Ba1 � A1��"
2
4= sin

22’;

d lnZam2���=d� 
 �Ba2 � A2��"2
1 � "

2
2 � "1"2�= sin22’;

d lnZam3���=d� 
 �Ba3 � A3�"
2
3= sin

22’:

(7)

Here "i are four-electron vertices determined from

d"1=d� 
 4d1���"1�"2 � "1� � 4d2"1"4 � 4 d3"1"2;
d"2=d� 
 2d1����"

2
2 � "

2
3� � 4d2�"1 � "2�"4

� 2d3�"
2
1 � "

2
2�;

d"3=d� 
 �4d0���"3"4 � 4d1���"3�2"2 � "1�;
d"4=d� 
 �2d0����"2

3 � "
2
4�

� 2d2�"2
1 � 2"1"2 � 2"2

2 � "
2
4�;

(8)

where
d0��� 
 ��1�R
2��1=2; d1��� 
minf�; ln��1�

��������������
1�R2

p
�=R	g; d2 
 �1�R2��1=2; d3 
 tan�1�R=

��������������
1�R2

p
�=R; (9)
with R 
 �2t0=t. Equations for Z��� 
 Z1���Z2���Z3���
are obtained by the replacement Bai � Ai ! Ai in (7). It
was argued in Ref. [13] that Eqs. (8) reproduce correctly
the solutions of the parquet equations which take into
account the complete momentum dependence of the verti-
ces. Numerical solution of Eqs. (7) demonstrates that the
vertices "i increase with decreasing � and diverge at the
critical value � 
 �c�t

0=t� [13]. We have Zam��� ! 1 at
�! �c while Za��� ! 0. This divergence signals a
transition into a magnetically ordered or superconducting
state at j�j<�c 
 2t�c. The equations (7) and (8) are
valid in the weak- and intermediate-coupling regime "i <
1, i.e., at j�j not too close to �c.

The electron spectrum is determined by the pole
of the Green’s function (6). Increasing the factors
Zam��� with decreasing � leads to j"��j<
2tmin�k2x; k

2
y� at the pole, so that � 
 max�k2x; k

2
y;
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j ~��j=2t� to logarithmic accuracy. This demonstrates
that the separation of momentum- and energy-
-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

εk/ (2t)

kx ky

FIG. 1. Quasiparticle dispersion for t0=t 
 �0:3 and U 
 4t
from RG approach. The values of the chemical potential are ~�� 

0;�0:2t;�0:4t (from top to bottom).
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renormalization effects turns out to be self-consistent.
We obtain therefore for the renormalized spec-
trum Ek
Ek 
 � ~�� � 2t
�

Z�1
ym�k

2
y�~kk

2
y � Z

�1
xm�k

2
x�~kk

2
x k2x;y > j ~��j=�2t�;

Z�1
ym�j ~��j=2t�~kk2y � Z

�1
xm�j ~��j=2t�~kk2x k2x;y < j ~��j=�2t�:

(10)
For j ~��j > �c and k� kc 
 �1=2c we have Z�1
xm;ym�k

2� ’ 1,
and the dispersion coincides with the bare one, while at
~kkx; ~kky < kc the spectrum becomes more flat due to renorm-
alization by the factors Z�1

xm;ym�j ~��j=2t�. Although the re-
gime j ~��j � �c, k < kc is outside of the region of the
validity of RG equations (7) and (8), we have formally
Ek 
 � ~�� for k < kc, i.e., the spectrum is flat in this
region. This is similar to the result of Dzyaloshinskii [9].
However, unlike that paper, we have taken into account all
the channels of electron scattering, which gives a flat part
of the spectrum already in one-loop approximation for the
vertices. The flat part formation was considered earlier as
one of the formally possible instability channels of Landau
Fermi-liquid (‘‘fermionic condensation’’ [21,22]). Here we
demonstrate that similar phenomena can take place in two-
dimensional systems near the Van Hove filling. The result
of numerical calculation of the dispersion law Ek accord-
ing to Eqs. (7) and (10) at different values of ~�� is shown in
Fig. 1. One can see that even at j ~��j > �c the spectrum has
a wide, almost flat region. The picture shown in Fig. 1 is in
good qualitative agreement with the ARPES data for
La2�xSrxCuO4 [15]. These data give a possibility to esti-
mate kc ’ 0:6a�1 (a is the lattice constant) for this system;
according to (2), this kc value corresponds to ~��c=�2t� 

�c ’ 0:1. We stress once more the difference of the present
approach with the approaches [23] which yield the flat-
tening of the spectrum owing to strong antiferromagnetic
correlations and therefore are reliable only at low hole
concentrations.

The flat part of electron spectrum leads to drastic
changes in the density of states and dependence n� ~���.
The contribution of the flat part of the spectrum to the
density of states can be written as
	��"� 
�
k2c
�2

Im
�kVH; "�

�"� ~���Re
�kVH; "�	
2 ��Im
�kVH; "�	

2



k2c
�
A�kVH; "�; (11)

where 
�k; "� 
 
�k; "� � Re
�k;��� and A�kVH; "�
is the quasiparticle spectral weight at the Van Hove
momentum.

Consider first the results obtained within the second-
order expression for 
�kVH; "�, Eq. (5). Note that at this
stage the effects connected with the renormalization of
electron dispersion are already taken into account by per-
forming summation of k-dependent logarithmically diver-
gent terms to all orders of perturbation theory. We have at
j ~��j � j"j � t to leading logarithmic accuracy for

�kVH; "� the result

	��"� ’
k2c
�j"j

C ln��t=j"j�

�1� C ln2��t=j"j�	2
; C 


g20 ln2

sin22’
: (12)

Therefore we obtain

n� ~��� 
 nVH �
~��

�2
���������������������
t2 � �2t0�2

p ln
�t
j ~��j

�
k2c
2�

sgn ~��

1� C ln2��t=j ~��j�
; (13)

where nVH is the Van Hove filling. The second term in the
right-hand side of Eq. (13) comes from momenta k > kc
outside the flat part of the spectrum and can be calculated
by using the bare density of states (4) since the renormal-
ization of the spectrum at these momenta is not too im-
portant. For small enough j ~��j we can neglect this term in
comparison with the third term to obtain

n� ~��� 
 nVH �
k2c sin22’

2�g20 ln2

sgn ~��

ln2��t=j ~��j�
; (14)

(the unity is small in comparison with the squared loga-
rithm in the denominator). The chemical potential mea-
sured from the VHS energy is given by a nonanalytical
function,

~���n� 
 �t exp��const=jn� nVHj1=2�; (15)

and is therefore practically zero in a rather wide range of
electron concentrations n near nVH. Note that, generally
speaking, in the absence of the quadratic terms in the
electronic spectrum, quartic terms may be important.
However, the presence of such terms give only subleading
corrections to the above results and does not change them
qualitatively.
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FIG. 2. The dependence n� ~��� � nVH for the same parameter
values as in Fig. 1, ~�� being referred to as VHS energy. The used
value of kc is 0.6. The dashed line corresponds to a bare electron
spectrum and the solid line to the result (13). The dot-dashed line
is the dependence with account of renormalizations of

�kVH; "�.
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The results of numerical calculations of n� ~��� with
Eq. (13) and the renormalized dependence n0� ~��� with
account of renormalization of 
�kVH; "� according to
Eq. (7) are shown in Fig. 2 for U 
 4t and kc ’ 0:6. The
dependence n0� ~��� obtained by integrating the bare density
of states (4) is also shown for comparison. The result for
n0� ~��� is shown at ~�� <��c only. One can see that the
dependence n� ~��� yields the pinning of the Fermi surface in
the concentration range about 4% above and below VH
filling [in fact, in the present approach the picture is
symmetric, n� ~��� � nVH 
 nVH � n�� ~���]. Such behavior
is in qualitative agreement with the ARPES results of
Ref. [15]. On the other hand, this is in contrast with the
behavior of the chemical potential measured relative to its
position in the insulating phase (Ref. [24]).

It is important that the condition jn0� ~��� � nVHj >
jn� ~��� � nVHj holds. This means that after account of
renormalizations the pinning effect becomes even stronger
than that given by Eqs. (13) and (15). Being extrapolated to
the region j ~��=tj< �c, the dependence n0� ~��� should give
even larger values of critical concentrations (about 6%).
One can expect that, for larger values of U=t, the critical
concentrations will be larger.

To conclude, we have developed a RG approach which
gives a possibility to describe the flattening of the electron
spectrum and does not suppose the presence of strong
antiferromagnetic fluctuations. As a result of the peculiar
structure of the spectrum, the pinning of the Fermi level to
Van Hove singularities in 2D systems occurs, the chemical
potential being practically constant in a range of dopings
near VH filling. In the pinning region the electron density
of states is determined by the quasiparticle damping and
076401-4
the system demonstrates essentially non-Fermi-liquid be-
havior. Further experimental investigations on LaSrCuO
and Bi2212 systems would be of interest to verify the
pinning picture proposed.
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