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How Well Do We Know Atomic Motions of Simple Liquids?
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Microscopic motions in molten potassium spanning three frequency decades are studied by neutron-
scattering techniques. These comprise well-defined density oscillations and stochastic particle rearrange-
ments and both are modeled on microscopic grounds. While vibratory motions are shown to share
characteristics with those of their parent crystals, dynamic correlations between a diffusing particle and its
neighbors can be accounted for only semiquantitatively.
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portion of the Q;! plane [6] portray the dynamics close to
melting (Tm � 336:7 K) as markedly different from other

allowance of a second, weaker and broader component
arising from the coherent part Sq:elc �Q;!�. The line shape
Our view of the microscopic dynamics of monoatomic
liquids heavily relies upon findings on molten alkali metals
that are paradigms of the so called ‘‘simple (harmonic)-
liquid’’ behavior [1]. Atomic motions are there rationalized
in terms of particle configurations. Those vibrational in
nature take place whenever atoms within a configuration
oscillate for times longer than their characteristic periods,
leading to spectra showing well-defined peaks up to large
Q wave vectors. In contrast, stochastic motions such as
those involving mass diffusion can be thought of as taking
place once the configurations (or ‘‘cages’’) become unsta-
ble leading to local rearrangements which restore local
equilibrium [2]. The quantity amenable to experiment is
the S�Q;!� dynamic structure factor. Its intensity often
shows, in addition to well-defined excitation peaks [3],
zero-frequency (quasielastic) components due to space-
dependent flow motions. These are known to be highly
entangled since the diffusing particle can move to a new
position only if it has been left vacant before, and therefore
a significant correlation between the moving particle and
its surroundings surely exists. Such intricacies force the
analysis of experimental S�Q;!� [3] to rely upon a number
of simplifying assumptions. Its inelastic component
Sinel�Q;!� containing details about collective density fluc-
tuations is often modeled by response functions such as the
damped-harmonic oscillator (DHO), valid within the hy-
drodynamic realm or interpolation formulas connecting
hydrodynamic and microscopic regimes [4]. Also, results
from kinetic theory [5] have proven adequate for analysis
of data concerning hard sphere fluids. However, to account
for the observed spectral line shape of a dense liquid metal
these models often have to be supplemented by ad hoc
quasielastic components which may introduce some model
dependence in the derived physical quantities.

Here we report on the dynamics of molten K studied by a
combination of neutron-scattering techniques at T �
343 K. Previous neutron data measured over a restricted
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alkali metals. Diffusive motions as seen in Sq:eli �Q;!�, the
incoherent part of the quasielastic spectra, are found to be
‘‘solidlike’’ [6], having large residence times for a particle
within a ‘‘cage.’’ Naturally abundant K is a mostly coher-
ent scatterer of neutrons (i.e., coherent to incoherent cross
sections 	c=	i � 6:26). This allows the derivation of the
coherent dynamic structure factor from the measured cross
section while enabling a separate study of Sq:eli �Q;!�, that
is the dominant feature at low Q’s.

Two sets of measurements were carried out at the ISIS
source (U.K.) on a sample contained within a custom-built
furnace. The IRIS backscattering spectrometer was set up
using the [002] reflection of pyrolitic graphite for the
analyzer crystals providing an energy resolution �E �
2:4 GHz. The MARI chopper spectrometer was employed
using incident energies Ei � 3:6 THz (�E � 0:1 THz),
7.2 THz (�E � 0:24 THz), and 12 THz (�E �
0:3 THz). Measurements on IRIS and those on MARI at
low Ei were devoted to a proper modeling of Sq:el�Q;!�
including both coherent and incoherent components.
Measurements at MARI with higher Ei’s aimed to the
precise determination of Sinel�Q;!�. The measured inten-
sity I�Q;!� after correcting for self-attenuation, multiple-
scattering, and multiexcitation effects fulfills

I�Q;!� � A�S�Q;!� � R�Q;!��

S�Q;!� �
	i

	i � 	c
Si�Q;!� �

	c

	i � 	c
Sc�Q;!�: (1)

Here A is a global scaling constant, R�Q;!� is the instru-
ment resolution function, and Si�Q;!� and Sc�Q;!� are,
respectively, the incoherent and coherent-scattering com-
ponents weighed by their relative cross sections.

Let us first deal with quasielastic spectra Sq:el�Q;!�. Its
incoherent part Sq:eli �Q;!� is the dominant contribution for
Q below Qp � 1:6 �A	1, where S�Q� shows its main maxi-
mum. Its linewidth is easily determined on IRIS after
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of Sq:el�Q;!� is well accounted for using two Lorentzians
with adjustable widths. Accurate measurement of
Sq:elc �Q;!� requires a wider energy window as provided
by measurements on MARI carried out with Ei �
3:6 THz. Within 1:6 �A	1 
 Q 
 1:8 �A	1 the separation
of both contributions is again facilitated by a large differ-
ence in linewidth. For 1:1 �A	1 
 Q 
 1:3 �A	1 both con-
tributions show comparable linewidths and the separation
is done relying on the mode-coupling prescription [3,7]. It
predicts a quasielastic spectrum with linewidth �!�Q� and
amplitude Sq:eli �Q; 0�,

�!�Q� � DQ2 	H���Q=Q�; (2)

Sq:eli �Q; 0� � �1�G��	1�Q=Q��=�DQ2: (3)

Here D is the self-diffusion coefficient, Q� �
16�MnD2�, M is the particle mass, n is the number
density, � � D=�D� �=Mn� with � being the shear vis-
cosity [8], and � � 1=kBT. The functions G��	1� and
H��� are given in Ref. [3]. The first terms in Eq. (2) stand
for Fickian diffusion and the second account for the cou-
pling of mass diffusion to the collective modes. The ade-
quacy of Eq. (2) is demonstrated in Fig. 1 which compares
the wave vector dependence of the linewidth as determined
on IRIS with �!�Q� within the two Q ranges where it
could be safely separated. On such a basis we choose
Eq. (2) to represent Sq:eli �Q;!� without involving any free
parameter and then make a reestimation of the coherent
linewidth. Its Q dependence, also plotted in Fig. 1, shows a
minimum about Qp and can be semiquantitatively repro-
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FIG. 1 (color online). Q dependence of quasielastic linewidths.
The solid line depicts the prediction of Eq. (2) and dashes
indicate the Fickian �! � DQ2 linewidths. Solid lozenges
show the linewidth for Sq:eli �Q;!� as determined on IRIS. The
open circles with a dot show the coherent quasielastic widths for
Sq:elc �Q;!� as determined from MARI. The dotted line shows the
prediction of Eq. (4). The inset depicts spectra for a representa-
tive Q � 0:70 �A	1 value.
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duced from [9]

�!c�Q� �
�!�Q�

S�Q��1	 j0�QR0� � 2j2�QR0��
: (4)

Here R0 is an atomic diameter set to the value correspond-
ing to the main minimum in the V�r� pair interaction
potential [10], jx� � stand for spherical Bessel functions,
and use is made of �!�Q� instead of Fickian diffusion. The
picture behind this portrays quasielastic scattering as aris-
ing from diffusive motions that enable a density fluctuation
to relax. Their relevant time scale is within � 1–10 ps.
Because of the relatively high fluid density, single-particle
diffusion will be slower than that expected for hydrody-
namic diffusion due to coupling with its surrounding par-
ticles. Such coupling gives rise to the modulation of
�!c�Q� with Q, while its amplitude follows the oscilla-
tions of S�Q�.

To analyze Sinel�Q;!� we seek an alternative represen-
tation for Sinelc �Q;!� that extends the usual ‘‘three-pole
approximation’’ [4]. This is needed since the standard
formulation [4] predicts a spectrum consisting of two in-
elastic peaks plus a small quasielastic peak with a line-
width / Q that significantly departs from the data shown in
Fig. 1. To improve the representation of Sinelc �Q;!� we
write

Sinelc �Q;!� �
�!��S�Q�

1	 e�	�h!��
Re�i!� ~MM�Q; i!��	1; (5)

where the tilde stands for Laplace transform. The memory
function is specified by a continued fraction ~MM�Q; s� �
!2

0�s� ~KK �1��Q; s��	1 with ~KK �n��Q; s� � K�n��Q; t �
0��s� ~KK �n�1��Q; s��	1. The usual approach terminates
the continued fraction at n � 1 assuming that K�2��Q; t�
decays too fast within our time window; i.e., ~KK �2� � 1=%.
This is improved by going one step further. In doing so one
arrives at

~MM�Q; s� � !2
0

�
s�

!2
l 	!2

0

s�
�!4

s	!4
l �

�!2
l	!2

0��s�1=%�

�
	1
; (6)

where !2
0 is the second frequency moment normalized to

S�Q� while !2
l and !4

s are, respectively, the ratios between
the fourth and sixth moments and !2

0. The second moment
is calculated from !2

0 � Q2=�MS�Q� with the data taken
from Ref. [11], while the fourth and the sixth depend upon
details of the interaction potential. Direct determination of
!l from experiment is precluded by background noise as
well as by limitations imposed by the neutron kinematics,
and therefore use is made of an approximation giving !l in
terms of R0 and an ‘‘Einstein frequency’’ !E [4].

Figure 2 compares spectra to the model given by Eq. (5)
using %, !s, !l and the scale factor as adjustable parame-
ters. The initial estimates for R0 � 4:72 �A and !E �
1:2 THz correspond to the minimum of V�r� and to !E �
�4�'=3M

R
1
0 drr2g�r�V 00�r��1=2 [4,10], where primes
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VOLUME 89, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 12 AUGUST 2002
denote the second derivative and g�r� denotes the radial
distribution function. They were refined iteratively using
the whole set of spectra and the final values were R0 �
4:62 �A, !E � 1:55 THz. In contrast, unphysically large
values for !E result if the standard expression for
Sinelc �Q;!� [4] is used to fit the spectrum.

Clear inelastic peaks arising from propagating density
oscillations are seen for Q 
 1:3 �A. Such a Q value marks
an abrupt change in the propagation regime as shown by
the characteristic time % displayed in Fig. 2. It also sets the
time scale for vibratory motions which, for 0:5 �A	1 

Q 
 1 �A	1, comes out to be 1 order of magnitude shorter
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FIG. 2. Spectra covering large energy transfers. Symbols de-
pict experimental intensities while thick solid lines show the
fitted model using Eq. (5). The dashed line shows the symme-
trized inelastic intensity as predicted by Eq. (5) and the dotted
line depicts the quasielastic contribution. The inset shows the
characteristic time %.
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than those of stochastic nature. Plots for !0 and !l to-
gether with results for the latter if left as a free parameter
are shown in Fig. 3(a). The closeness between calculated
and fitted values for !l validates the use of Eq. (5) and
suggests that the reduced fourth-frequency moment should
not be too far from our approximation.

The linear dispersion cTQ given by the isothermal sound
velocity cT � 1605 ms	1 approaches !0 for Q 

0:3 �A	1. The frequencies !m corresponding to maxima
of peaks in S�Q;!� and those !ml from maxima of the
longitudinal current CL�Q;!� � !2S�Q;!�=Q2 calcu-
lated from the fitted spectra are significantly above !0.
Since !ml are equivalent to the characteristic frequencies
of a DHO they may be considered as true physical fre-
quencies of the oscillatory motion. Damping effects be-
come increasingly important for Q > 0:6 �A	1. The
difference between !ml and !m provides a way of quanti-
fying its importance. Moreover, for Q > 1:3 �A	1, the ab-
sence of any clear peak in S�Q;!� constitutes a vivid
reminder that excitations are here overdamped. For Q >
1:3 �A	1, !ml should then be regarded as a statistical tool to
describe the data rather than as a physical frequency.

Both !m;!ml and !l approach the Q ! 0 hydrody-
namic realm in a way reminiscent of that followed by other
alkali metals [3] showing a large amount of positive anom-
alous dispersion. Our data approach a linear dispersion
given by the high-frequency sound velocity c1 ��������������������������������������������������
�3=�M� � �3!2

ER
2
0=10�

q
� 2490 ms	1 of an elastic me-

dium being sampled ‘‘instantaneously’’ by a high-
frequency probe. The mechanisms leading to such large
velocity dispersion are understood from the breakdown
of the linearized Navier-Stokes formulas to describe
hydrodynamic phenomena for frequencies above
BT=��0:6 THz, where BT is the isothermal bulk modulus
[13]. Here, the propagation of dilatational or shear waves is
determined from the equations of motion for an isotropic
solid in which the bulk and rigidity moduli are now com-
plex, frequency dependent quantities. A connection with
observed quantities is made in terms of the Q-dependent
modulus [4]: C11�Q� �

Mn!2
l

Q2 , which enables one to get
information on C11�Q� from knowledge of !l. Figure 3(b)
displays such data together with the (Q ! 0) value calcu-
lated for solid K at room temperature [14] and shows that
liquid data come close to the value for the crystal at long
wavelengths. This result is further substantiated by com-
paring !l or c1 with experimental single-crystal disper-
sions for longitudinal phonons measured along the �00-�
direction at 9 K, 299 K [12], as well as to the values
extrapolated to 343 K. Figure 3(b) illustrates how the
crystal branches approach c1Q from below as expected
on hydrodynamic grounds. This is understood since pho-
non dispersions for cubic metals along main symmetry
directions are governed by the V 0�r�, V00�r� derivatives of
V�r� taken at nearest-neighbor distances and the lattice
constant, and none of these shows abrupt changes upon
melting the hot crystal.
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FIG. 3. (a) Estimates for !0 (solid line). The dash-dotted line
shows hydrodynamic dispersion �hyd � csQ with cT �
2:55 THz �A and the dashes stand for c1Q with c1 � 3.96
THz �A . Thick dots are !l as calculated from R0 and !E.
Circles with a dot show !l when left as a free parameter.
Filled symbols give !m and crosses !ml (see text). The dash-
dotted and dotted lines depict the exact Q ! 1 ideal-gas limits
!i:g:

0 �
����������������������
Q2kBT=M

p
and !i:g:

l �
������������������������
3Q2kBT=M

p
for the two fre-

quency moments. (b) Wave vector dependence of C11�Q� elastic
moduli. The solid line shows the data for molten K as derived
from !l. The thick filled symbol at Q � 0 shows the value
calculated from elastic moduli of the room temperature crystal.
The inset compares c1 (dashes) and !l (solid line) with the
experimental frequencies for the �5 �00-� dispersion [12] for 9 K
(open circles), 299 K (crosses), and an extrapolation to 343 K
(solid dots).
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Rather than being restricted to K, the interpretation of
the high-frequency sound velocity just described can easily
be extended to the other alkali metals for which elastic-
constant data are available (Li, Na, and Cs [14]). The
calculated values for the hot crystals yield phase velocities
of 6692 ms	1 (Li), 3545 ms	1 (Na), and 1363 ms	1 (Cs),
075508-4
which compare with reported values for liquids of �
6500 ms	1, 3025 ms	1, and 1061 ms	1, respectively.

The picture drawn from the present data portrays vibra-
tory, short-lived motions in simple liquids explored at THz
frequencies as a remnant of those of their parent crystals at
temperatures close to melting. In contrast, liquid dynamics
once a configuration becomes unstable exhibits rather
more intricacies. While the microscopics of single-particle
diffusion are now adequately understood, the dynamic
correlations between the tagged particle and its neighbors
which take place over many picoseconds still need to be
clarified in full.
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