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Giant Improvement of Time-Delayed Feedback Control by Spatio-Temporal Filtering
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Control of spatio-temporal chaos by the time-delay autosynchronization method is improved by several
orders of magnitude. Unstable time periodic patterns are efficiently stabilized if one employs filters and
couplings which originate from the Floquet eigenvalue problem of the unstable orbit. We illustrate our
scheme by an application to a globally coupled reaction-diffusion model which describes charge transport
in semiconductor devices.
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extended activator a�x; t� and the global inhibitor u�t�. In typical situations such feedback couples nonuniformly to
Introduction.—Control has become one of the most
rapidly developing areas in nonlinear science within the
last decade [1]. Whereas early investigations had focused
on chaos control in low-dimensional dynamical systems,
the focus now shifts towards the application in spatially
extended dynamics [2–6].

Control is, of course, a well developed discipline in
engineering and applied mathematical sciences.
However, a new aspect of recent research in physics is
the emphasis on noninvasive methods, i.e., control schemes
where the control force finally vanishes if the desired state
is reached. Such an idea is potentially fruitful in chaotic
systems where the huge number of different unstable peri-
odic orbits allows for stabilization of various states by
applying tiny control power [7]. One scheme where the
control force is constructed from time-delayed measured
signals (Pyragas control or time-delay autosynchroniza-
tion) [8] has turned out to be very robust and quite simple
and universal to apply. Deeper theoretical understanding of
the corresponding differential-difference equations has
been gained just recently [9–11].

In the present work we focus on the control and selection
of spatio-temporal patterns in spatially extended systems.
Attempts in that direction have been made recently in the
context of optical systems [5,12,13] by selecting certain
spatial Fourier modes for generating appropriate control
forces. Such an approach essentially corresponds to a
suitable spatial filtering of the control signal. The strictly
noninvasive version with asymptotically vanishing control
force is limited to the case of spatially periodic patterns. It
is the purpose of this Letter to propose a control scheme
which can be more widely applied, also to nonperiodic
patterns, and which leads to a dramatic improvement of the
control domain. It thus represents a highly efficient scheme
to select and stabilize various spatio-temporal patterns in
spatially extended systems.

We apply our method to a nonlinear reaction-diffusion
system of activator-inhibitor type with a global coupling.
The relevant dynamical variables are given by the spatially
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dimensionless units the equations of motion take the form
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where the nonlinearity is given by g�j� � j=�j2 � 1�, � is
an inverse time scale, T is an internal parameter determin-
ing the range of bistability, and j0 is the external control
parameter. Such a reaction-diffusion system is representa-
tive for a wide class of globally coupled bistable models
which may arise, e.g., in chemical reaction systems, elec-
trochemistry, or semiconductor physics. It was originally
derived for charge transport in a semiconductor hetero-
structure [14], where u�t� is the voltage across the device,
and j�x; t� � u�t� � a�x; t� is the local current density in
the sample. We shall consider Neumann boundary condi-
tions on a one-dimensional spatial domain of size L. For
K � 0 and suitable choices of the parameters the model
exhibits spatio-temporal chaos and unstable time periodic
spatio-temporal spiking modes. In order to stabilize those,
we have introduced control forces fa and fu with control
amplitude K. In what follows we will develop an appro-
priate choice for these forces.

Spatio-temporal delayed feedback method.—In order to
gain some insight into the control scheme, analytic con-
siderations are useful. Let ap�x; t� � ap�x; t� �� and
up�t� � up�t� �� denote the unstable time periodic pat-
tern which we intend to stabilize. In real experiments only
a limited amount of data is available from which appro-
priate control forces have to be deduced. Consider the
situation where a single signal s is measured which is
given by a linear functional of the internal state

s�t� �
Z L

0
��
a�x; t�a�x; t� dx���

u�t�u�t� (2)

with filter functions �a and �u. Following the idea of
time-delayed feedback control, the control force is derived
from a time-delayed difference of this signal. However, in
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FIG. 1. Autosynchronization of spatio-temporal spiking by
time-delayed Floquet mode control. (a) Spatially averaged cur-
rent density hji � 1

L

R
L
0 j�x; t�dx versus time. The control �K �

10�8� is switched on at t � 10 000. Region A: chaotic spiking
without control; region B: transient phase; region C: periodic
spiking. (b) Space-time plot of j�x; t� for phase C.
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the internal degrees of freedom so that the control forces
are chosen as

fa�x; t� � �a�x; t��s�t� � s�t� ��	

fu�t� � �u�t��s�t� � s�t� ��	
(3)

with some system dependent coupling functions �a
and �u.

We shall perform a linear stability analysis of (1) with
the schemes (2) and (3). There exists some canonical
choice where even analytical results can be derived.
Suppose that the coupling functions are chosen as the
(right) eigenfunctions of the linear stability problem of
the uncontrolled pattern. Applying similar arguments as
in [10], we can reduce the stability problem of the con-
trolled system to the stability problem of the free orbit
provided the inner product of the filter and coupling func-
tions is time independent,

�0 �
Z L

0
��
a�x; t��a�x; t�dx���

u�t��u�t�: (4)

Thus the control performance is given in terms of the
complex Floquet exponent � which obeys the transcen-
dental equation

� � �� K�0�1� exp�����	: (5)

Here � denotes the complex Floquet exponent of the free
(uncontrolled) orbit and (5) holds for the eigenvalue branch
whose eigenfunctions determine the coupling of the con-
trol force. Stabilization occurs if � has a negative real part,
and thus (5) may give rise to a finite control interval for K.
Note that the same equation with �0 � 1 holds for diagonal
control, i.e., a control force fa�x; t� � a�x; t� � a�x; t� ��,
fu�t� � u�t� � u�t� ��.

Condition (4) is ensured if �a and �u correspond to the
left eigenfunction, i.e., an eigenfunction of the adjoint
Floquet problem. The control scheme described so far
can be considered as a proper generalization of Fourier
filtering techniques to systems where translation invariance
is broken by boundary conditions so that Fourier modes no
longer yield suitable eigenmodes of the dynamics.

Let us finally mention some technical aspects. In cases
where the Floquet exponents are complex, the eigenfunc-
tions are complex valued as well. However, for an orbit
with negative Floquet multiplier exp����, i.e., an orbit
which flips its neighborhood by � during one cycle, this
condenses in a single phase factor,

�a=u�t� � exp�i�t=�� a=u�t�;

�a=u�t� � exp�i�t=��’a=u�t�;
(6)

and the real-valued parts  a=u and ’a=u can serve as a real-
valued filter. Of course, periodicity of the eigenfunctions
implies, e.g.,  a=u�t� � � a=u�t� ��.

Implementation of the control strategy.—We investi-
gate the linearized equations of motion which follow
from Eq. (1),
074101-2
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�
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where ��t� :� �ap�x; t�; up�t�� is the unstable periodic orbit
which will be stabilized. Observing the exponential growth
of the variations �a and �u we can obtain the largest
Floquet exponent as well as the corresponding (right)
eigenfunction. Left eigenfunctions are computed in a simi-
lar way by integrating the adjoint equation backwards in
time. The eigenfunctions, i.e., the filters and the couplings,
depend on the particular pattern under consideration. We
determine that orbit by an independent method, e.g., by
control with diagonal coupling or by solving the associated
boundary eigenvalue equation. Note that there is a com-
pletely independent and experimentally relevant way to
obtain the (right) eigenfunctions. If successful control is
achieved by some method, then switching off the control
force leads to control signals a�x; t� � a�x; t� �� and
u�t� � u�t� �� which grow exponentially according to
the most unstable Floquet eigenmode. We have checked
the feasability of this method numerically, too.

First we consider a parameter regime (T � 0:05, � �
0:035, L � 40, and j0 � 1:262) where the free motion
exhibits chaotic sequences of single spatio-temporal spikes
pinned at one boundary [Fig. 1(a), region A]. The chaotic
spiking which corresponds to flashing current filaments
in a semiconductor context arises via a period doubling
scenario [6]. Thus only one unstable Floquet mode appears
(Fig. 2) and the Floquet multiplier is negative. Using the
074101-2
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control schemes (3) and (4) with an appropriate value
of the control amplitude K, the spiking becomes regular
[cf. Fig. 1(a), region C, and Fig. 1(b)] with periodicity
� � 985:9.

We now examine the range of control amplitudes K at
which the control is successful (Fig. 3). For diagonal
control Eq. (5) yields precise values of the control range,
which are in good agreement with the numerical results. In
this regime our proposed Floquet eigenmode control also
stabilizes the desired periodic pattern. However, the full
range for which this control scheme is successful is dra-
matically larger than for diagonal control. In particular, it is
possible to achieve control with K 
 10�9, while Eq. (5)
predicts a lower bound of K 
 10�4. The employed con-
trol scheme is apparently about 5 orders of magnitude more
effective than diagonal control.

However, Eq. (5) is exact only if we use eigenmodes
which are synchronized with the respective position on the
periodic orbit ��t�. But dephasing along the Goldstone
mode may yield a different control regime. To make such
an argument explicit, we write Eqs. (1) in a shorthand
notation as

_zz � F�z� � Kw�hv�t�jz�t�i � hv�t� ��jz�t� ��i	 (9)

where z�t� � �a�x; t�; u�t�� and w � ��a;�u�, v �
��a;�u� are the right- and left-Floquet eigenmodes, re-
spectively, of ��t�. h:j:i denotes an inner product. Now, with
��t�, ��t� �� is also a periodic solution of Eq. (9) for
arbitrary values of the dephasing �. Linear stability analy-
sis results in the Floquet eigenvalue problem,

_WW� ��W� � DF���t� ���W�

� K�1� exp�����	hvjW�iw: (10)

For vanishing dephasing W��0 � w holds and Eq. (5) is
recovered. For � � 0 we consider the lower bound of the
control regime, K���, defined by the flip instability �� �
i�. Taking the derivative of Eq. (10) with respect to �,
multiplying with the solution V� of the adjoint problem,
and integrating over one period �, we obtain a differential
FIG. 2. (a) Floquet left eigenmode ’u�t� and ’a�x; t� for the
largest Floquet exponent, and (b) corresponding right eigenmode
 u�t� and  a�x; t�. Parameters as in Fig. 1, normalization �0 � 1.
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equation for K���,

N���@�K � �Z���K (11)

with

N��� �
Z �

0
hvjW�ihV�jwidt;

Z��� �
Z �

0
hv@t�jW�ihV�j�widt:

(12)

From Z�� � 0� � 0 it follows that @�Kj��0 � 0. Thus for
vanishing dephasing �, which corresponds to the result of
diagonal control, the lower bound of the control amplitude
becomes extremal. Formal integration of Eq. (11) and
using the asymptotic relations Z��� � O��� and N��� �
O�1� yields for small �

K��� ’ K�0� exp��A�2�; (13)

where the constant A � Z0�0�=N�0� depends on the spe-
cific system. For positive values of A Eq. (13) reflects a
superexponential decrease of the critical control amplitude
with dephasing �.

Pattern selection: Stabilization of central spikes.—For
globally coupled reaction-diffusion systems with
Neumann boundary conditions, it can be shown under quite
general conditions that stationary patterns with extrema in
the interior of the spatial domain are always unstable [15].
However, with the help of the Floquet mode control and
symmetry considerations, it is also possible to stabilize
spikes located in the interior of the spatial domain. A target
periodic orbit �~aap�x; t�; up�t�� at the center of a system of
length 2L can be conceived as a symmetric extension of a
boundary spike �ap�x; t�; up�t�� at x � L in a system of
length L,

~aap�x; t� �
�
ap�x; t� if 0 � x � L
ap�2L� x; t� if L � x � 2L

: (14)

The corresponding symmetric Floquet eigenmodes
�~  Sa; ~  

S
u� and �~’’S

a; ~’’
S
u� are constructed by using the same
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FIG. 3. Regime of Floquet eigenmode control (full line) and
diagonal control (dotted). The spatio-temporal average ' �
hja�x; t� � a�x; t� ��j � ju�t� � u�t� ��jix;t is plotted versus
the control amplitude K as a measure of successful control.
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FIG. 4. (a) Stabilization of central spikes by Floquet mode
control (K � 0:0005). Symmetric (b) right- and (c) left-Floquet
eigenmodes, ~  Sa�x; t� and ~’’S

a�x; t�. Corresponding antisymmetric
(d) right and (e) left eigenmodes ~  Aa �x; t� and ~’’A

a �x; t�.
Parameters as in Fig. 1, but with L � 80.
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symmetric extension (14). Using those Floquet modes in
Eqs. (2) and (3) does not necessarily result in successful
stabilization, since the control scheme is not sensitive to
growing antisymmetric fluctuations. It is therefore neces-
sary to construct a second set of eigenmodes �~  Aa ; ~  Au �
which are antisymmetric. This is accomplished by inte-
grating the linearized Eqs. (7) on the domain 0 � x � L
with @x�a�x; t� � 0 at x � 0 and Dirichlet boundary con-
dition �a�x; t� � 0 at x � L. Applying an antisymmetric
extension we obtain the antisymmetric Floquet right
eigenmode

~  Aa �x; t� �
�
 Aa �x; t� if 0 � x � L
� Aa �2L� x; t� if L � x � 2L

: (15)

The left eigenmode ~’’A
a is calculated analogously [cf.

Figs. 4(b)–4(e)]. As a by-product we obtain the voltage
components of the eigenmodes ~  Au �t� �  Au �t� and ~’’A

u �t� �
’Au �t� as well as the value of a second Floquet multiplier. In
generalization of Eq. (2) the control force now has two
contributions which correspond to the two sets of eigen-
functions. Using this method, it is possible to stabilize a
central spike [Fig. 4(a)].

Conclusion.—We have demonstrated that spatio-
temporal filtering of the control signal by Floquet eigen-
modes of the free orbit can improve time-delayed feedback
074101-4
control methods by several orders of magnitude. The use of
eigenmode projections appears particularly useful for the
stabilization of spatially nonperiodic patterns, like single
spatio-temporal spikes or current filaments. Moreover, we
have successfully employed an extension of the Floquet
filter method to stabilize single spikes at a desired location,
e.g., in the center of the system where they are normally
unstable in an uncontrolled system. We propose that this
method of pattern selection could become potentially use-
ful for applications in data storage, where single bits could
be written in a spatially extended system at various loca-
tions. In terms of the semiconductor model this might open
up a perspective of efficient control of spatio-temporal self-
organization and current density patterns in electronic
devices. The implementation of the scheme requires the
computation of the Floquet eigenfunctions and thus some a
priori knowledge about the unstable orbit. However, quali-
tative features of the control scheme do not seem to depend
sensitively on the details of the filter, so that an implemen-
tation in real experiments seems to be promising.
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