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Separation and Identification of Dominant Mechanisms in Double Photoionization
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Double photoionization by a single photon is often discussed in terms of two contributing mechanisms,
knockout (two-step-one) and shakeoff, with the latter being a pure quantum effect. It is shown that a
quasiclassical description of knockout and a simple quantum calculation of shakeoff provides a clear
separation of the mechanisms and facilitates their calculation considerably. The relevance of each
mechanism at different photon energies is quantified for helium. Photoionization ratios, integral, and
singly differential cross sections obtained by us are in excellent agreement with benchmark experimental

data and recent theoretical results.

DOI: 10.1103/PhysRevLett.89.073002

Our understanding of dynamical processes often rests on
isolating approximate mechanisms which leave character-
istic traces in the measured or computed observables. A
prime example is double photoionization. After the initial
absorption of the photon by the primary electron the sub-
sequent redistribution of the energy among the electrons
is often discussed in terms of two mechanisms [1,2],
knockout (KO) (sometimes called ‘“‘two-step-one” [3])
and shakeoff (SO) [4-6]. The first mechanism describes
the correlated dynamics of the two electrons as they leave
the nucleus where the primary electron has knocked out the
secondary electron in an (e, 2e)-like process. The second
mechanism accounts for the fact that absorption of the
photon may lead to a sudden removal of the primary
electron. This causes a change in the atomic field so that
the secondary electron relaxes with a certain probability to
an unbound state of the remaining He" ion; i.e., the
secondary electron is shaken off.

Apart from general properties, e.g., the prevalence of
shakeoff at high photon energies, it is difficult to separate
the processes. However, they are distinct with respect to
their quantum nature: shakeoff is a purely quantum me-
chanical phenomenon while knockout dynamics occurs
classically as well as quantum mechanically. This opens
up the possibility to separate shakeoff and knockout by
calculating the latter (quasi)classically, provided the qua-
siclassical approximation to knockout is good. Clearly, the
quasiclassical KO mechanism does not contain any part of
SO (which is purely quantum).

The two phases of double photoionization, initial ab-
sorption and redistribution of the energy, can be expressed
by the relation

O-;Jr = O-absP}JE+: (1)

where X stands for either shakeoff or knockout. In the
following, we evaluate Py ™ for full fragmentation of the
ground state and use the experimental data of Samson et al.
[7] for o,,. We obtain the classical double escape proba-
bility for KO with a classical-trajectory Monte Carlo
(CTMC) phase space method. CTMC has been frequently
used for particle impact induced fragmentation [8—11] with
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implementations differing typically in the way the phase
space distribution p(I') of the initial state is constructed.
Details of our approach will be published elsewhere; here
we summarize the important steps only.

Within our phase space approach, the double escape
probability P¢J is formally given by

P = lim [l expllr — 1) LD, @)

with the classical Liouvillian L for the full three-body
Coulomb system propagated from the time #,,, of photo-
absorption. The projector P* ™ indicates that we have to
integrate over only those parts of phase space that lead to
double escape (the asymptotic final energies of the two
electrons, € and E — &, are positive). The integral in Eq. (2)
is evaluated with a standard Monte Carlo technique which
entails following classical trajectories in phase space.

The electrons are described immediately after absorp-
tion by the distribution

p(L) = N6(F))pa(72 Po) 3)

where N is a normalization constant. The primary elec-
tron absorbs the photon which has an energy /iw. With
5(7,) we demand the absorption to occur at the nucleus [2],
an approximation which becomes exact in the limit of high
photon energy [12]. This approximation significantly re-
duces the initial phase space volume to be sampled. Regu-
larized coordinates [13,14] are used to avoid problems with
electron trajectories starting at the nucleus (7, = 0).

The function p,(7,, p,) describing the secondary elec-
tron in Eq. (3) is given by

P27y, Po) = W¢(72y P2)8(eh — &p). “4)

It is obtained by calculating the Wigner distribution,
W (72, P2), of the orbital §(7,) = Wo(F; = 0, 7,) for a
choice of initial wave function W, and restricting the initial
energy of the secondary electron, siz", to an energy shell .
In the KO mechanism the initial state correlation is not im-
portant, so we take the independent particle wave function
Wo(Fy, 7o) = (Z/ ) expl—Z.(F) + F,)] with effective
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charge Z.; = Z — 5/16. From this choice follows g5 =
—ngf/2 and 8i2n = p%/2 - Zeff/rz.

The double-to-single ratio in the absence of the SO
mechanism is simply given by

In Fig. 1 we show Rk as a function of the excess energy E
(dashed line). The shape is characteristic of an impact ion-
ization process [16]. For high energies the primary electron
moves away so quickly that there is no time to transfer
energy to the secondary electron; Ry thus drops to zero as
expected. The nonzero asymptotic ratio (indicated by an
arrow in Fig. 1) is due to SO which we describe next.

In contrast to KO the shake mechanism is inherently
nonclassical in nature. Moreover, initial state correlations
are important for shakeoff. As a generalization of the
standard formula for SO [5], Aberg gave an expression
for the probability to find the shake electron in state ¢, at
any excess energy [6],

w =Ko 1Y/ 1 ¢7), (6)

with
Pr(7p) = fd371 v (F)Wo(7y, 7o), @)

where v(7,) is the wave function of the primary electron
after it has left the atom. If it was in an s state before the
absorption, it is in a p state afterward. The secondary
(shake) electron does not change its angular momentum.
It can be found with probability P, in a hydrogenic eigen-
state of the bare nucleus, being either bound (& = n,) or in
the continuum (a = ¢€). As for KO, we assume that the pri-
mary electron absorbs the photon at the nucleus. In this
situation we do not need to know »(7;) but can simply
replace () by Vy(F; =0,7,) in Eq. (7). We may
further simplify the calculation of shakeoff for practical
applications in two-electron atoms by taking for Wy (7, =
0,7,) a normalized hydrogenic wave function ¢{5°(7,)
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FIG. 1. Photoionization double-to-single ratio. Circles: bench-

mark experimental data (Samson et al. [15]). Full line: complete
theoretical result. Dashed line: knockout mechanism only. Dot-
dashed line: shakeoff mechanism only. The arrow indicates the
asymptotic ratio ( ~ 1.645%).
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where the correlations have been “absorbed” into an ef-
fective shake charge Zgg [17]. For Zgo =2 — 0.51
the exact asymptotic ratio R, = 0.01645 [18,19] is re-
produced. We have found little difference for the shake
probability as a function of excess energy between this
simple ansatz and a fully correlated Hylleraas wave func-
tion [20] for W,
The shakeoff probability of Eq. (6) reduces now to

Py =Ko | 7). (®)

The total double ionization probability from shakeoff at
finite energies E is given by integrating expression (8) over
the energy & of the shake electron in the continuum
(a = ¢),

P£®=ﬁ@m ©)

The photoionization ratio when only the SO mechanism
is taken into account [same as Eq. (5) but for SO] is shown
in Fig. 1 (dot-dashed line). The ratio rises slower than the
KO mechanism result, up to an energy of about 100 eV
where the KO ratio reaches its maximum value. The SO
ratio continues to rise until at a couple of hundred eV it
moves more slowly up toward the asymptotic value. An
interesting feature of the plot is where the KO and SO
results cross at an excess energy of ~350 eV.

To obtain more insight into the two mechanisms, we
calculate the differential probabilities dPy * /de, where X
stands for either SO or KO. In our classical model of the
KO mechanism, we divide the interval of values for &
which corresponds to double escape (0 = & = E) into N
equally sized bins (we take N = 21) and work out the
differential probability by finding the trajectories which
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FIG. 2. Differential probabilities for separate knockout and
shakeoff mechanisms for a number of excess energies. Circles:
knockout mechanism results from binning. Solid lines: fits
through circles. Dashed lines: shakeoff mechanism results. See
text for details.
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fall into the bins. For the SO mechanism the probability per 1.03 ' ' @)
energy unit, P, in Eq. (9), already gives the differential - 1.01 ¢ . )
probability. Since the electrons are indistinguishable, the 1 0.99 6eV 1
differential probabilities must be symmetrized about the 0.97

equal energy sharing point (¢ = E — & = E/2), 1

dpP3+
de

_ l(dP;+(s, E) N dPy*(E — ¢, E)
de de

). (10)

sym 2

In the case of low excess energy (6 eV), we find a
slightly concave shape for the KO distribution (see
Fig. 2). This implies a preference for equal energy sharing,
the typical behavior close to threshold [21]. The SO result
in contrast displays a slightly convex shape which becomes
flat as £ — +0. Unequal energy sharing is always pre-
ferred by SO since the photoelectron is fast with respect to
the secondary electron. For all higher excess energies
shown, both mechanisms display a convex form.

SO may be viewed as an additional quantum contribu-
tion to the quasiclassically calculated double photoioniza-
tion given by KO. This means that the full result is given by

++ ++ ++
do™" abq(dPKO + dPg; ) an

de de de

Integration over ¢ yields the total double ionization cross
section,
o = g (PES + PIS) = oid + odd (12)

The single ionization cross section is o = o — o
and the double-to-single ratio is givenby R = o™+ /o™ =
P /(1 = P*"), where P** = P{4 + PSS

In Fig. 1 we compare the ratio R (solid line) to the
experimental data of Samson et al. [15]. For excess ener-
gies up to 200 eV we find an excellent agreement. In the
energy regime where the two contributions are of the same
size there is a deviation between experiment and our result
(at worst 8%). Exactly in this situation any interference
which exists between SO and KO would show its largest
effect. The deviation we find may be due to such an inter-
ference which we cannot account for since we determine
KO quasiclassically. At higher energies the difference
decreases again (already visible in the plot) until at very
high energies our result reproduces the asymptotic ratio.

From the agreement with the experiment, we can infer
that interference between SO and KO is in general small.
As one can also conclude from [1], this is probably a
consequence of the fact that the fully differential ionization
amplitudes (which should be added coherently) are very
different for SO and KO. The issue can be clarified with the
formulation of SO and KO differential in the angles. This is
planned and possible, although it will require considerably
more numerical effort to obtain KO with sufficient statis-
tics in the CTMC calculation.

Here we can assess the relative importance of both
contributions to the single differential cross section (energy
sharing) at different total energies E. From Fig. 2 one sees
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FIG. 3. Singly differential cross sections normalized to 1 for
e = 0. Solid lines: our complete theoretical results at excess
energies of (a) 6, (b) 21, and (c) 41 eV. Dashed lines: new results
of Colgan et al. [22] at excess energies of (a) 4, (b) 20 and 25,
and (c) 40 eV.

that at 110 eV SO has become more important than KO for
highly unequal energy sharings. As energy is increased to
450 eV, SO begins to dominate regions of unequal energy
sharing. On the other hand, KO is higher at equal energy
sharing for all excess energies E.

Figure 3 shows that our singly differential cross sections
(SDCS) agree well with the recent ab initio theoretical
results of Colgan et al. [22]. We note that the results of
Proulx and Shakeshaft [23] show a concave shape for
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FIG. 4. Absolute singly differential cross sections. Solid lines:
our theoretical results at excess energies of (a) 6, (b) 11, (c) 21,
(d) 31, and (e) 41 eV. Circles: recalibrated (see text) experi-
mental data of Wehlitz er al. [24] at the same excess energies
apart from (a) which is at 5 eV. The triangles in (e) additionally
show the Wehlitz data renormalized to the o' ' (41 eV) of
Samson [15].

073002-3



VOLUME 89, NUMBER 7

PHYSICAL REVIEW LETTERS

12 AUGUST 2002

0.03 , : : ;
O,
0.02 :
ig
A
0.01
05 = 0 X X 3
10 10 10 10 10 10
scaled energy
FIG. 5. P%5 (solid line) as a function of the scaled energy

E/E}; compared to the cross section for electron impact ioniza-
tion of He' [27] (circles) as a function of E/Ep (see text).
Additionally, the impact ionization data has been multiplied by a
factor C = 4.67 X 10" cm™2 to make the maxima of both
curves the same height. (1/C may be interpreted as the geomet-
ric cross section.)

excess energies below 20 eV. This is in disagreement with
our results which are convex down to 6 eV. In Fig. 4 we
compare our absolute SDCS to the experimental data of
Wehlitz et al. [24], which has been recalibrated using the
values of the photoabsorption cross section of Samson et
al. [7]. In their original work, Wehlitz et al. normalized
their SDCS using a photoabsorption cross section [25]
which is now known to overestimate the 5-41 eV range
by 9% to 16%. In addition, the photoionization ratio they
measured at 41 eV is ~17% higher than the Samson et al.
[15] data, and so we renormalize Fig. 4(e) to take this into
account.

Our approach not only facilitates the calculation of
double photoionization, it also offers considerable insight
into the physical process, e.g., concerning the similarity
with electron impact ionization of He* [2,26]. Indeed, we
can show that impact ionization may be viewed as the KO
part of double photoionization (Fig. 5). The only difference
is that impact ionization sees a He* hydrogenic target
electron with binding energy Ez = —Z2/2, Z = 2, while
the KO process involves a bound electron with energy
Ely = —Z2%:/2. One may thus say that both processes
differ only slightly, namely, in the energy scale set by the
respective bound electron.

We conclude that the separate formulation and calcu-
lation of knockout and shakeoff offers an accurate descrip-
tion of double photoionization. Interestingly, this implies
little interference between both contributions, a fact which
deserves further study in the future. Because of the
moderate numerical effort required, our approach can be
extended along two directions: first, to describe angular
differential cross sections for double ionization and sec-
ond, to describe total and energy resolved triple photo-
ionization cross sections.
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