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Microscopic Correlation Functions for the QCD Dirac Operator with Chemical Potential
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A chiral random matrix model with complex eigenvalues is solved as an effective model for QCD with
nonvanishing chemical potential. The new correlation functions derived from it are conjectured to predict
the local fluctuations of complex Dirac operator eigenvalues at zero virtuality. The parameter measuring
the non-Hermiticity of the random matrix is related to the chemical potential. In the phase with broken
chiral symmetry all spectral correlations are calculated for finite matrix size N and in the large-N limit at
weak and strong non-Hermiticity. The derivation uses the orthogonality of the Laguerre polynomials in
the complex plane.
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theoretic origin of the RMM description has been well
understood [14].

chiral RMM. In particular, we will not touch the issue of
universality here although we expect that in analogy to [22]
Random matrix models (RMM) have been a useful tool
in theoretical physics for a long time. In many physical
systems the local fluctuation properties, for example of the
energy levels, are universal and can be successfully de-
scribed by RMM, where we refer to [1] for a review.
Although in the generic situation the Hamiltonian and
other physical observables are Hermitian thus having real
eigenvalues, there exist also important cases where com-
plex eigenvalues occur. As examples, we mention local-
ization in superconductors [2], dissipation and scattering in
quantum chaos [3], or quantum chromodynamics (QCD)
with chemical potential [4].

Much less is known so far for spectral correlations of
complex eigenvalues derived from RMM. Although the
first results date back to Ginibre [5] where the correlations
for the complex unitary ensemble labeled by the Dyson
index � � 2 were calculated, progress has been slow. The
correlation functions of the ensemble with real nonsym-
metric matrices (� � 1) are still unknown. Results for
quaternion matrices (� � 4) were obtained more recently
in [6,7] and the inclusion of Dirac mass terms for � � 2 in
[8]. Furthermore, it has been realized by works of
Fyodorov and collaborators [9] that different regimes of
complex eigenvalues exist, the weak and strong non-
Hermiticity limit. In the present work we extend these
results to a new chiral complex matrix model.

Chiral RMM of real eigenvalues have been introduced to
describe the local fluctuation properties of the Dirac op-
erator in QCD at the origin [10]. The low energy spectrum
of the QCD Dirac operator is a very sensitive tool to study
the phenomenon of chiral symmetry breaking [11]. The
predictions of different chiral RMM ensembles have been
very successful in describing the dependence on the gauge
group and its representation, the number of quark flavors
and masses, and topology [12]. In particular the topology
dependence has been very useful in comparison with new
developments in lattice gauge theory, admitting to incor-
porate an exact chiral symmetry [13]. By now the field
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On the other hand lattice simulations in the presence
of a chemical potential �, which renders the Dirac eigen-
values complex, remain extremely difficult, as reviewed
in [15]. Although recent progress has been made [16]
along the phase transition line the general phase dia-
gram remains unexplored for � � 0. In this context ana-
lytical knowledge of microscopic correlation functions
from complex chiral RMM could be very useful,
in view of its success in predicting real eigenvalue
correlations.

Chiral RMM including the effect of� have been already
studied in several works [4,17–19]. These are schematic
models for QCD with � � 0 sharing its global symmetries
but lacking yet a derivation from field theory such as [14].
In [4] the nature of the quenched limit has been analyzed in
a chiral RMM, and the global density of complex eigen-
values together with its boundary have been calculated as a
function of �. The phase diagram of QCD in the tempera-
ture density plane has been predicted from such a RMM
[18]. Recently complex Dirac eigenvalues calculated on
the lattice have been successfully confronted to a complex
RMM on the microscopic scale given by the inverse vol-
ume in the bulk [19]. The nearest neighbor distribution
along a given direction in the complex plane was consid-
ered and a transition from the Unitary to the Ginibre
ensemble was observed at increasing �, ending in a
Poisson distribution. Our aim is to provide more detailed
information to be compared with lattice data. Therefore we
consider a new effective matrix model which does allow us
to calculate all microscopic correlation functions in the
complex plane, both in the limit of weak and strong non-
Hermiticity. It is defined as a natural chiral extension of the
complex ensemble treated in [8,9]. Although the main
motivation is the application to QCD lattice calculations
with � � 0 the new correlation functions we derive may
find other applications as well, such as the fractional
quantum Hall effect [20] or two-dimensional charged plas-
mas [21]. We restrict ourselves to work with a Gaussian
2002 The American Physical Society 072002-1
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the same correlation functions hold for a more general
weight function at large N.

We start our investigation by defining our model. The
chiral random matrix partition function in terms of
the complex eigenvalues zj�1;...;N of a complex N � N

matrix J � H � i
������������������������������
�1� �=1� ��

p
A is defined as

Z
�Nf;��
N ��� �

Z YN
j�1

dzjdz�jw
�a��zj�j�N�z21; . . . ; z

2
N�j

2; (1)

where we have introduced the weight function

w�a��z� � jzj2a�1exp

�
�

N

1� �2

�
jzj2 �

�
2
�z2 � z�2�

��
:

(2)

It captures the influence of Nf massless quark flavors in a
fixed sector of topological charge �, where a � Nf � �.
We have taken the absolute value of the Dirac determinant
but the weight depends on the real and imaginary parts of
the eigenvalues. It has been chosen to be Gaussian with
variance �1� ��=2N for both the Hermitian and anti-
Hermitian part of J, H, and A, respectively. The parameter
� 2 �0; 1� controls the degree of non-Hermiticity and
will be related to the chemical potential � in QCD
from [4] below. The Jacobi determinant from the diago-
nalization of J [5] yields the Vandermonde determinant
�N�z1; . . . ; zN� �

Q
N
k>l�zk � zl�. The reason for the model

Eq. (1) being chiral can be seen as follows. For real
eigenvalues the chiral ensemble [10] is usually defined
on the real positive line,

R
1
0 d��

a exp��N��. By substitut-
ing � � y2 it can be mapped to the full real axis,R
1
�1 dy jyj

2a�1 exp��Ny2�, where y corresponds to a real
eigenvalue of the Dirac operator 6D [23]. In the latter
picture the continuation into the complex plane is straight-
forward, leading to the ensemble (1). The difference to the
massless nonchiral ensemble [8] is the additional power jzj
and the argument of �N . Furthermore, the orthogonal
polynomials for the ensemble (1) are given by Laguerre
polynomials Lan�z2� in the complex plane.

A chemical potential � is included in the QCD action by
adding ��0 to the Dirac operator 6D, making its eigenval-
ues complex. We aim to describe the local fluctuation of
small eigenvalues close to the origin, because of their
importance for chiral symmetry breaking through the
Banks-Casher relation [24]. For � not to completely domi-
nate the Dirac determinant we will restrict ourselves to
small values of �. In [4] a chiral RMM different from
Eq. (1) was used, replacing 6D by a chiral random matrix
and keeping the additional term ��0 explicitly. Here, we
treat 6D���0 as a chiral, complex matrix instead. The
advantage of our model is to have an eigenvalue represen-
tation and to permit for explicit calculations of all micro-
scopic correlation functions. We will take the model [4] to
relate our parameter � to � by comparing to the macro-
scopic spectral density ��z� and its boundary calculated
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there as a function of �. We conjecture that [4] and our
model describe the same universal local fluctuations of
complex QCD Dirac eigenvalues. In the limit of small �
the spectral density of [4] becomes approximately con-
stant, ��z� � 1=4��2, and it is bounded by an ellipse,
x2=4� y2=4�2 � 1, where z � x� iy. This behavior
can also be observed for lattice data with small � (e.g.,
in [19,25]). The macroscopic density in our model can be
read off from [26] since the Dirac determinants are sub-
dominant in the macroscopic large-N limit:

��z� �
1

��1� �2�
; if

x2

�1� ��2
�

y2

�1� ��2
� 1: (3)

We therefore identify

4�2 � �1� �2�; (4)

valid for small chemical potential and � close to unity
meaning small non-Hermiticity. For large values of � the
eigenvalue density on the lattice is no longer constant and
develops a hole in the middle (see, e.g., [19,25]). We will
see such a hole develop in the microscopic correlations at
strong non-Hermiticity, as shown in Fig. 2.

After having identified all parameters in our model
Eq. (1) we turn to its solution using the powerful method
of orthogonal polynomials [6]. We only state the results
and refer to [27] for details. All eigenvalue correlation
functions are first given for a finite number of eigenvalues
N and then in two different large-N limits corresponding to
weak and strong non-Hermiticity. The orthogonal polyno-
mials in the complex plane are defined as

Z
dzdz�w�a��z�P�a�

k �z�P�a�
l �z�� �  kl: (5)

Following standard techniques [6] the knowledge of the
kernel of orthogonal polynomials

K�a�
N �z1; z

�
2� � �w�a��z1�w

�a��z�2��
1=2

XN�1

k�0

P�a�
k �z1�P

�a�
k �z�2�

(6)

allows one to calculate all k-point correlation functions

��a�
N �z1; . . . ; zk� � det

1�i;j�k
�K�a�

N �zi; z�j ��: (7)

The result for the orthogonal polynomials Eq. (5) is given
in terms of Laguerre polynomials

P�a�
k �z� �

��
a� k
k


f�a����

�
�1=2

����kLak

�
Nz2

2�


; (8)

with the normalization integral f�a���� �
R
dzdz�w�a��z�

f�a���� � N�a�3=2�;�
�
a�

3

2


�1� �2��a=2���3=4�

� Pa��3=2�

�
1��������������

1� �2
p


(9)
072002-2



0
1

2
3

4
50

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0
1

2
3

4

FIG. 1 (color online). The microscopic density for %2 � 0:6.
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and Pa��3=2��x� being the Legendre function. All k-point
correlation functions then follow by inserting the polyno-
mials into Eqs. (6) and (7). In our results the parameter a �
Nf � � can be kept real (with a > �1). For example, we
can set a � � 1

2 as a check, recovering the even subset of
the Hermite polynomials in the complex plane [20].

Since we did not find Eq. (8) in the literature we briefly
sketch its derivation. Performing a change of variables z !
ei’z in the normalization integral f�a���� we obtain

1 �

�
exp

�
u

u� 1

�
Nz2

2�

�
exp

�
u�

u� � 1

�
Nz�2

2�

��
; (10)

with

u �
�2�1� e2i’�

�1� �2e2i’�
(11)

and the average taken with respect to w�a��z�. Multiplying
both sides of Eq. (10) with ��1� u��1� u����a�1 and
recognizing the generating functional of the Laguerre pol-
ynomials we obtain the desired orthogonality relation,
given properly normalized in Eq. (8).

After giving the exact solution for finite N we turn to the
large-N limit. We first consider the weak non-Hermiticity
limit. Following [9] we take the limit � ! 1 such that the
combination

lim
N!1

N�1� �2� � %2 � 4N�2 (12)

is kept fixed. Because of the identification Eq. (4) we
consequently also rescale � going to zero when N ! 1.
In other words the weak non-Hermiticity parameter %2

directly measures the chemical potential in the micro-
scopic scaling limit. Such a rescaling is similar to that of
the quark masses [28]. It has been already mentioned in
[17] that in a RMM the numerical effort to obtain con-
vergence grows exponentially with N�2. Keeping it fixed
here should make a comparison to data feasible.
Furthermore, we also rescale the complex eigenvalues
keeping
072002-3
N�<ez� i=mz� � Nz � '; (13)

fixed. The matrix size N corresponds to the volume on the
lattice. This defines our microscopic origin scaling limit in
the complex plane. The kernel Eq. (6) and correlators
Eq. (7) also have to be rescaled with the mean level spacing
1=N of the eigenvalues.

In order to obtain the microscopic kernel from Eq. (6)
we replace the sum by an integral,

P
N�1
k�0 ! N

R
1
0 dt,

where t � k
N , and use the asymptotic limit of the

Laguerre polynomials to finally arrive at

K�a�
S �'1; '

�
2� �

j'1'�2j
a��1=2�������������

2�%2
p

�'1'�2�
a
e��1=%2���=m'1�2��=m'�2�

2�

�
Z 1

0
dte�%

2tJa�
�����
2t

p
'1�Ja�

�����
2t

p
'�2�:

(14)

The microscopic, weakly non-Hermitian correlation func-
tions obtained from Eq. (7) are our first main result:
��a�
S �'1; . . . ; 'k� �

Yk
l�1

�
j'lj������������
2�%2

p e��2=%2��=m'l�2
�

det
1�i;j�k

�Z 1

0
dte�%

2tJa�
�����
2t

p
'i�Ja�

�����
2t

p
'�j �

�
: (15)
As an important check in the Hermitian limit %2 ! 0
corresponding to � � 1 the universal correlations
[10,22] of the chiral RMM with real eigenvalues are
reproduced. To give an example for Eq. (15) we have
depicted the quenched microscopic density in part of the
complex plane in Fig. 1. The other directions follow from
symmetry. The oscillations known from the real case [10]
spread into the complex plane, indicating the locations of
the individual eigenvalues.

We now turn to the strong non-Hermiticity limit. In this
limit � 2 �0; 1� and consequently also � from Eq. (4) is
kept fixed in the large-N limit. The eigenvalues are now
rescaled with the square root of the volume [8,9],

����
N

p
�<ez� i=mz� �

����
N

p
z � '; (16)

defining our microscopic origin limit at strong non-
Hermiticity. In this limit the infinite sum in Eq. (6) can
be evaluated using standard formulas for Laguerre poly-
nomials, and we obtain for the kernel and the correlation
functions in the strong limit (given up to a constant)
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FIG. 2 (color online). The microscopic density for � � 0:5.
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K�a�
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;

(17)

��a�
S �'1; . . . ; 'k�

�
Yk
l�1

j'lje
�1=�1��2�j'lj2 det

1�i;j�k

�
Ia

�
'i'�j
1� �2

�
: (18)

As a check they can be reobtained from Eq. (15) in the
weak limit by taking % ! 1 there, identifying %2 � 1�
�2. They differ from Ref. [21] due to the different inter-
action term in Eq. (1). An example for Eq. (18) is given in
Fig. 2, the quenched microscopic density. As being ob-
served in quenched lattice data [19,25] the microscopic
spectral density develops a hole at the origin.

In summary, we have introduced a new chiral RMM
having complex eigenvalues. All k-point correlation func-
tions have been calculated explicitly at finite N as well as
in the limits of weak and strong non-Hermiticity. The
parameter � that governs the non-Hermiticity has been
related to the chemical potential � in QCD by comparison
to a schematic model with the same global symmetries.
While the microscopic density shows qualitative features
of Dirac eigenvalues calculated in lattice QCD a quantita-
tive comparison with data remains to be done.
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