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Shear-Excited Sound in Magnetic Fluid
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Perceptible sound is shown to be excited in ferrofluids by the shear motion of a rigid plate, if the fluid is
exposed to a magnetic field oblique both to the plate and to the direction of propagation. This is in contrast
to other fluids, including anisotropic ones such as nematic liquids.
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Magnetodissipation in ferrofluids is said to occur when
the actual magnetization M�r; t� deviates from its

sensible only in direct comparison to experiments, with a
specific ferrofluid and a given geometry.
Ferrofluids, or magnetic fluids, are colloidal suspensions
of nanosized ferromagnetic particles stably dispersed in a
carrier liquid. Exposed to an external magnetic field, they
behave paramagnetically, with susceptibilities � unusually
large for liquids. In combination with slow magnetic re-
sponses and general liquid behavior, this causes ferrofluids
to display much unexpected behavior, severely testing, and
with time perfecting, our understanding of the interplay
between hydrodynamics and electromagnetism [1–5].
Equally important, it also opens up a wide range of inter-
esting applications.

In this Letter, we draw attention to the fact that oscil-
latory shear motion of a wall in ferrofluids will excite
sound, which may be picked up by a microphone posi-
tioned at the opposite end of the liquid container, say, a few
cm away. This is striking, because given the viscosity of the
fluid, its field-free response to the wall’s shear motions
should die out after a few viscous penetration depths,
within fractions of a mm, and no signals whatever are
expected at the microphone’s position.

The amplitude of the predicted, shear-excited sound is
proportional to ��M2 sin2’, where � � 1

2r� v is the
vorticity, and v the velocity of the fluid; M is the magnet-
ization, � its relaxation time, and ’ the angle between the
wall’s normal and M’s projection onto the shear plane.
When an external field breaks the isotropy of a fluid,
coupling between longitudinal and transverse velocity
modes is to be expected on general ground. But this for-
mula shows that it is the combination in ferrofluids of the
unusually large magnetic susceptibility with its macro-
scopically slow relaxation (�� 1, �� 10�4 s) that makes
the effect under focus measurable and relevant.

Although the emphasis in magnetic fluid research has
been on incompressible flow configurations, a fair-sized
number of papers [6–13] consider the propagation of
sound, mainly focusing on the sound velocity and attenu-
ation, in varying geometries and field configurations. All
neglected the field-mediated coupling between sound and
shear wave, and assumed pure density waves free of vor-
ticity. This is a generally justified simplification only in
ordinary liquids, but not in ferrofluids, in which magneto-
dissipation is strong.
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equilibrium value Meq�H; �; T�, determined by the local
magnetic field H�r; t�, the local density ��r; t�, and the
local temperature T�r; t�. Magnetodissipation may be
present not only in oscillatory flows (of frequency !),
but also in stationary ones. Starting from the low-frequency
end, its effect scales with !� in the first case and with ��
in the second case, where � is the relaxation time of the
magnetization. The two best studied magnetodissipative
phenomena, both in incompressible flow configurations,
are (i) the enhanced shear viscosity ( ���) in a static
magnetic field [2,14] and (ii) the reduction of this enhance-
ment in response to a high-frequency ac field (‘‘negative
viscosity’’) [15–17]. In both cases, the vorticity � leads to
an off-equilibrium magnetization, �M�Meq� � 0, which
enters the momentum balance, feeding back to the dynam-
ics of � and changing the apparent viscosity.

In compressible flow situations such as sound, circum-
stances are only slightly more complicated. Here devia-
tions of M from equilibrium are induced not only by the
transverse component � of the velocity, but also by the
longitudinal one, r 	 v, or, equivalently, by density fluctu-
ations 
�. Since any �M�Meq�, again entering the mo-
mentum balance, feeds back to the dynamics of r 	 v and
� simultaneously, these two flow fields become coupled:
A finite � gives rise to �M�Meq�, which leads to r 	 v�

� � 0. Vice versa, a finite 
��r 	 v leads, again via
�M�Meq�, to � � 0. Therefore, a sound wave propagat-
ing through magnetized ferrofluids is accompanied by
vorticity; and an oscillating shear generator excites sound.
One may refer to this effect as magnetodissipative coupling
between shear and sound, which works, as will become
clear soon, only if the orientation of the applied magnetic
field is neither parallel nor perpendicular to the direction of
propagation (cf. Fig. 1).

To streamline the arguments and work out the physics
clearly, we shall implement three realistic simplifications
below: (i) weak magnetic field, (ii) hydrodynamic regime
!� 
 1, and (iii) adiabaticity of sound propagation and
shear diffusion. It is not difficult to abandon any of these
simplifications, but doing so will not qualitatively change
the predictions, only obscure them, and unnecessarily and
considerably complicate the end formulas. This would be
2002 The American Physical Society 067201-1
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FIG. 1. Given a magnetic field H in the x-z plane, at an angle
’, a plate oscillating along x is predicted to emit sound waves
� sin2’. This may be picked up by a microphone D located at
z � z0, where z0 is much larger than both the wavelength of
sound and the viscous penetration depth. (Filled arrows indicate
the direction of propagation, and dashed lines the crests of the
sound wave.)
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Weak fields, the first simplification, imply the linear
constitutive relation, Meq � �H and a diagonal form for
the Onsager matrix. For a typical ferrofluid, the linear
constitutive relation is accurate to within 10% at a field
strength of around H � 5 kA=m, at which shear-excited
sound should be well observable. The 10% inaccuracy is
hardly important at present since we are focused on pre-
dicting a qualitatively new effect. The same is true of the
off-diagonal terms in the Onsager matrix, such as
1Mi�rjvj� and 2Mjv

0
ij in the equation of motion for

the magnetization M (see Ref. [5]). These gain importance
in relation to the field-independent, diagonal terms for
higher fields, but they do not alter the fact that sound and
shear couple at finite fields, low or high.

The hydrodynamic regime !� 
 1 was selected be-
cause the considered effect is strong enough here, and
the associated calculation remains simple. Adiabaticity or
adiabatic limit means that the entropy per unit mass re-
mains constant during the oscillation, 
� � 0, which is to
be contrasted with the isothermal limit, 
T � 0. Adiaba-
ticity is valid because in ferrofluids, shear diffusion and
sound are usually fast processes on the time scale of
heat conduction: The Prandtl number, Pr, given by
the quotient of characteristic thermal diffusion time over
viscous diffusion time, or, equivalently, by kine-
matic viscosity over heat diffusivity, Pr � �=�, is usually
of the order of 10–100. (Depending on the ferrofluid,
we have �  10�6–10�3 m2=s, and �  10�7–10�5 �
m2=s.) Adiabaticity means the magnetic susceptibility �
must be taken as a function of � and �, rather than T and �.

Now a few words on the equations we start from to
deduce the effect of shear-excited sound, since there is still
considerable controversy about the valid ferrofluid dynam-
ics. The point is, although for compressible flows, espe-
cially sound damping, there is considerable difference
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between our version of the ferrofluid dynamics [5] and
the other two, by Shliomis [2] and Felderhof [4], all three
lead to very similar results in the present context, for the
excitation of sound by shear. This is mainly because of two
points. First, a large portion of the differences (especially
those terms mentioned above, preceded by 1, 2; . . . )
vanish in the weak-field limit; second, the remaining differ-
ences are in the field dependence of the eigenvalues of the
matrix in Eq. (15), and not in its eigenvectors. The first
yields the information on how a magnetic field alters the
velocity and damping of sound, a smallish effect; the
second yields the information on how sound and shear
couple. Note also that the hydrodynamic Maxwell theory
[18] would have yielded exactly the same results, since it is
completely equivalent to the ferrofluid dynamics of Ref. [5]
in the hydrodynamic limit �! 
 1 (see [19]). This ends
the introduction.

We start from the recently derived ferrofluid dynamics
[5], a generalized hydrodynamic-type theory that contains
the magnetization as a slow variable. The density ��r; t�
and the velocity field v�r; t� obey their respective conser-
vation laws

@t��rj��vj� � 0; (1)

@t��vi� � rj��ij ��D
ij� � 0; (2)

with the stress tensors given as

�ij � A
ij � �vivj �HiBj �
�0

2
�hiMj � hjMi�; (3)

�D
ij � 2�1v

0
ij � �2
ij�r 	 v�; (4)

where v0ij �
1
2 �rivj �rjvi� �

1
3
ij�r 	 v�, while A �

�u� sT ���� �v2 �H 	 B is a function of the energy
density u, its variables s, �, B, and its conjugate variables
T, � (chemical potential), H. In the weak-field limit, the
relaxation of the magnetization is governed by

@tM� �v 	 r�M� ���M� � ��h=�; (5)

where h, defined generally as ��1
0 @u=@M, reduces to

�M�Meq�=� for linear constitutive relations, with Meq �
�H. (The field variables H, M, and B are given in SI units,
with �0 the vacuum permeability.) For the evolution of the
magnetic field, it is sufficient to take the electric field as
static, and employ the Maxwell equations as

r 	B � 0; r�H � 0: (6)

Now, we consider plane wave perturbations of the uni-
formly magnetized rest state: 
�;v;�; 
M;h; . . . , all pro-
portional to ei�k	r�!t�, with k and ! denoting wave vector
and frequency. Note the distinction between 
M and h �
�
M� 
Meq�=�, where 
 denotes the deviation from the
respective homogeneous, motionless rest state. 
Meq �
�H; �; �� is nonvanishing because H and � varies with
time. (As discussed above, � is constant.) While 
M is
nonvanishing even if the magnetization is perpetually in
067201-2



VOLUME 89, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 5 AUGUST 2002
equilibrium, or 
M � 
Meq, we have h � 0 only off-
equilibrium, when there is magnetodissipation.

An immediate consequence of M � B=�0 �H and
Eqs. (6) are the two relations


H � �
Mk ; 
B � �0
M? ; (7)

where k and ? denote the parallel and perpendicular
components with respect to k, the wave vector. With

Meq � �
H�H
�, this allows one to express h as

h � ��1� ��
Mk � 
M? �M���=��
��=� ; (8)

where �� � @���;��=@�. Equations for the longitudinal
and transverse velocity are obtained by taking the diver-
gence and curl of Eq. (2), respectively, giving��

c20 �
�0M2

��

�
�2�2�
�2

�
�2���

2�

��
r2 � @2t

�

� (9)

�
4
3�1 � �2

�
r2@t
��

�0

�

�
���

�

�
M 	 r2
M � 0;

�@t�� ��0=4�r � r� �h�M� � �1r
2� � 0;

(10)

where c0 is the zero-field, adiabatic sound velocity, and
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��� � @2���;��=@�2. Let us examine Eqs. (9) and (10),
step by step: (i) In the absence of fields (H;M � 0), the
familiar case of a normal liquid is retrieved, with two
decoupled modes, the damped propagating sound wave,
and the diffusive shear mode. (ii) At finite fields but
negligible magnetodissipation (H;M � 0, h ! 0), sound
and shear remain decoupled, with sound displaying a shift
in its dispersion relation, and shear still unaffected:
Inserting Eq. (8) with h � 0 into (9) yields an anisotropic
sound velocity c2 � c20 � �c2, with

�c2 �
�0

��

��
���

�

�
2 �
1� �

M2
k
�

�
�2���

2�

�
M2

�
: (11)

Using the specifications of a typical ferrofluid, with �  1,
�  1 g=cm3, � / �, and taking H � 5 kA=m, the rela-
tive increment �c=c0 is rather small, less than 10�4.

(iii) Now consider the interesting case of finite mag-
netodissipation, h � 0, which needs to be solved by elim-
inating 
M and h from Eqs. (9) and (10), in favor of 
�
and �, by employing Eq. (5). This is most easily ac-
complished in the low-frequency limit, in which terms of
order �!��2 and �!������ may be neglected. Then 
M is
given as

Mk �

�
���

�1� ���

�
Mk

�

�
1�

�@t
1� �

�

�� ����M�k=�1� �� ; (12)


M? � ���=��M?�1� �@t�
�� ����M�? ; (13)

with h given by these expressions and Eq. (8). Inserting all three into Eqs. (9) and (10) yields the set of equations we need.
Consider first the coupling term r�r� �h�M� of Eq. (10), which takes the form

����

1� �
�H? �Hk�r

2@t
��r�r� ����H� �H� : (14)

The first term is the interesting one, as it clearly states the fact that given density fluctuations 
��t�, the component of the
vorticity � that is parallel to �H? �Hk�—or to �k�H� — is also excited. Denoting this component as �, the coupled
portion of Eqs. (9) and (10) appears as�

k2c20 �!2 � i!k2�43�1 � �2�=��O�H2�; i!k2�0��HkH?��=�1� ��
i!k2�0��HkH?��=�1� ��; 4i!�i!� �1k

2=�� �O�H2�

��
r	v
�

�
�

�
0

0

�
: (15)
For H � 0, only the diagonal elements remain, and the
solvability condition reflects the existence of two inde-
pendent modes, sound and shear, with the solutions given
as �1; 0� and �0; 1�. Starting from this as the zeroth order
solution, we can calculate the corrections for finite fields.
The task is simple if we confine the calculation to order H2.
At that level of accuracy the field-dependent diagonal
terms, abbreviated by O�H2�, contribute only to the solv-
ability condition, or dispersion relations, while the off-
diagonal terms enter only the solution vector; i.e., they
alone account for the coupling of the two modes. The latter
is an effect of large relative size as it corrects the two zeros
in the solution vector. The field-dependent, diagonal terms
are longish and their contributions insignificant, that is, the
reason they have been left unspecified. Qualitatively, their
contribution is also of order H2, where the change in sound
velocity, as has been shown below Eq. (11), is negligible.
The field-induced sound attenuation scales with the factor
�0��H

2=�1; it is more significant but still small. For a
ferrofluid with �  0:5 ms, �1  0:5 Pa, and �  1 [20]
this factor is, for H � 5 kA=m, less than 3%. A detailed
and systematic investigation of magnetodissipative sound
attenuation in ferrofluids will be considered in a separate
paper.

We now calculate the corrections to the solution vectors.
Starting with the soundlike mode we insert the dispersion

ksound � �

�
!
c0

�
i
2

!2

�c30

�
4

3
�1 � �2

��
�O�H2� (16)
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into Eq. (15) and obtain the solution�
r	v
�

�
�

�
1

"

�
; " �

i!��0

4c20

���

1� �
HkH?; (17)

where we have used the inequality !�i��c20� 
 1, valid
for acoustic sound. Equation (17) states that sound is
accompanied by a finite shear in magnetized ferrofluids if
the direction of propagation is neither parallel nor perpen-
dicular to the applied field.

Likewise, inserting the spectrum of the shear mode

kshear � �
1� i���
2

p

��������
!�
�1

r
�O�H2�; (18)

into Eq. (15), we obtain the eigenvector�
r 	 v
�

�
shear

�

�
�4"
1

�
: (19)

Equation (19) is the key result of this paper, and quite
sufficient for predicting the main outcome of the experi-
ment suggested in the introduction. Taking � � �0 and
r 	 v � 0 as the appropriate boundary conditions for
the experiment, we can calculate the amplitudes of the
two modes by solving Asound �1; "� � Ashear ��4"; 1� �
�0; �0�, yielding

Ashear � �0 �O�H4�; Asound � "�0 �O�H4�:

(20)

This result can be tested, as mentioned, by the setup de-
picted in Fig. 1. A rigid plate, at z � 0 and in contact with a
magnetized ferrofluid, executes harmonic oscillations in
the x-y plane, along y. If the magnetic field H �
�H?; 0; Hk� � H�sin’; 0; cos’� is such that both H? and
Hk are nonzero, a soundlike wave is excited. Because of its
weak attenuation, it is detectable by a microphone at a dis-
tance far beyond the penetration depth of the shear mode.
The associated amplitude of the pressure 
p is given by

j
pj � c20
� � c20�
r 	 v
�i!

�
��0

2

����

1� �
H2 �0 sin2’:

(21)

For concreteness consider the oscillation frequency ! �
2%� 1000 Hz, and a ferrofluid with the viscosity of �1 �
0:5 Pa. Then the penetration depth

�������������������
�1=�!��

p
 0:3 mm

of the shear mode is less than a mm, while the sound mode
displays a spatial decay length of the order of 200 km.
Assuming that the shear is generated by a piezoshear
crystal, with a deflection amplitude of �x � 1 �m, we
have the amplitude �0 � !3=2��=�1�1=2�x � 22:3 Hz.
Applying a magnetic field of H � 5 kA=m at an angle of
’ � %=4, the pressure amplitude resulting from Eq. (21) is

p  2 �bar, exceeding the acoustic threshold of the
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human ear by more than 3 orders of magnitude. In other
words, one should actually be able to hear the shear-
generated sound.

Finally, a few remarks on the magnetic susceptibility as
used in this paper. Knowing its dependence on density and
temperature, ���; T�, the above employed derivative
�����;�� may be expressed as

�
@���;��

@�
� �

@���; T�
@�

� T
@���; T�

@T
c2t "v

Cv
: (22)

According to Eq. (22), both magnetostrictive and mag-
netocaloric contributions are involved, where "v �
��1=��@��p; T�=@T denotes the thermal expansion coef-
ficient, ct the isothermal sound velocity, and Cv �
T@��T; ��=@T the specific heat at constant volume, all
evaluated at zero field. Usually, the temperature depend-
ence of the susceptibility is weak at room temperature, and
for a typical olefine-based carrier liquid the dimensionless
factor c2t "v=Cv can be estimated as 0:3.
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