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Vortices with Fractional Flux in Two-Gap Superconductors and in Extended Faddeev Model
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We discuss linear topological defects allowed in two-gap superconductors and equivalent extended
Faddeev model. We show that, in these systems, there exist vortices which carry an arbitrary fraction of
magnetic flux quantum. Besides that, we discuss topological defects which do not carry magnetic flux and
describe features of ordinary one-magnetic-flux-quantum vortices in the two-gap system. The results
could be relevant for the newly discovered two-band superconductor MgB2.
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energy functional. In [10] it was shown that there exists condensates, the vector field ~CC decouples from the field ~nn,
A fundamental property of the Abelian Higgs model is
the quantization of magnetic flux [1]. In an ordinary super-
conductor the Abrikosov vortices can carry only an integer
number of magnetic flux quanta. The intriguing possibili-
ties of topological defects carrying a fraction of flux
quantum have long attracted interest, and several nontrivial
realizations were identified. For example, a half flux-
quantum vortex in a spin-1 condensate is a configuration
where a Cooper pair has its spin reversed when moving
around the vortex core (this is an analog of an Alice string
in high energy physics where a particle moving around the
string flips its charge or enters a ‘‘shadow world’’); also, a
half flux-quantum vortex can be formed on a junction of
3-grain boundaries in a crystal, etc. [2]. In this Letter, we
discuss vortices in two-gap superconductors [3,4] (known
in particle physics as a Higgs doublet model [5]) and in the
extended Faddeev model. We show that these vortices can
carry an arbitrary fraction of magnetic flux quantum.

Experimentally, two-gap superconductivity has been
observed in the transition metals Nb, Ta, V, and in
Nb-doped SrTiO3 [6]. More recent experiments indicate
the two-gap nature of superconductivity in MgB2 [7] and
2H� NbSe2 [8]. Two-gap models appear also in the theo-
retical studies of liquid metallic hydrogen, which should
allow superconductivity of both electronic and protonic
Cooper pairs [9]. Other realizations of the two-gap system
are superconductors with two types of pairing (e.g., a
mixture of s- and p-wave condensates).

A two-gap superconductor is described by a two-flavor
Ginzburg-Landau (GL) free energy functional:

F �
1

2m1
j�r � ieA��1j

2 �
1

2m2
j�r � ieA��2j

2

� V�j�1;2j
2� � 	��	

1�2 ��	
2�1
 �

B2

2
; (1)

where �
 � j�
je
i�
 , V�j�1;2j

2� � � b
j�
j
2 �

c

2 j�
j

4, and 	 is a characteristic of the interband
Josephson coupling strength [4]. Many exotic properties
of (1) are obscured in the GL presentation of the free
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an exact equivalence mapping between the model (1) and
an extended version of Faddeev’s O�3� nonlinear � model
[11], which describes the two-gap superconductors in
terms of gauge invariant variables which explicitly show
the degrees of freedom present in the system. This model
consists of a three-component unit vector ~nn in interaction
with a massive vector field ~CC and a density-related variable
� [12]:
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d
dxi

, V � A� Bn3 � Cn23. The models (1) and
(2) are connected in the following way [10]: coeffi-
cients A;B;C are given by A � �2�4c1m
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. The potential term V in (2)

determines the ground state value for n3, which corre-
sponds to uniform density of both condensates. We denote
it as ~nn3 � �N2

m2
� N1
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�1, where N1;2 stands for the

average hj�1;2j
2i. In the presence of the intrinsic

Josephson effect, the ground state value of ~nn corresponds
to a point where n1 � �1 on a circle specified by the
condition n3 � ~nn3 � cos~��. We note that (2) shows the
Meissner effect [10] (the generation of mass for ~CC),
the corresponding length scale � is the London magnetic
field penetration length: �2 � 1

e2 �
j�1j

2

m1
� j�2j
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�1. One

can observe from (2) that along with the Meissner effect
in a two-band superconductor there exists a neutral boson.
That is, if one considers a uniform density of
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because ~nn � @i ~nn � @j ~nn / sin��@i�@j� � @i�@j�
 � 0
when n3 � cos~�� � const. Thus, when 	 � 0, the system
possesses a massless neutral O�2� excitation associated
with the phase variable � � ��1 ��2�. This phenomenon
has no counterpart in one-gap superconductors where the
Goldstone boson associated with O�2� symmetry is
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‘‘eaten’’ by the Meissner effect. In the presence of the
Josephson effect (	 � 0) the variables still decouple, but
the Josephson term �2Kn1 breaks the neutral O�2� sym-
metry by giving a mass to n1.

Let us discuss vortices in the system (2). In the London
limit (j�ij � const) , Eqs. (1) and (2) become
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From this expression, one can observe that the vorticesH

characterized by ���1 ��2� � � dl �r��1 ��2�
 �
4#m; ���1 ��2� � 0 (where we integrate over a closed
curve � around the vortex core) are the analog of m-flux
quanta Abrikosov vortices in an ordinary superconductor
characterized by j�j2

m � �j�1j
2
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2
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�. Let us observe that if

both phases �1;2 change by 2# around the core, then a
vortex carries one quantum of magnetic flux.

The vortices characterized by ���1 ��2� � 4#n in the
case where j�1j

2

m1
� j�2j

2

m2
have nontrivial structure. Let us

first consider the case when ���1 ��2� � 0 and ���1 �
�2� � 4#. First of all, such a vortex features a neutral
superflow characterized by a 4# gain in the variable �. In
the case of 	 � 0, this vortex is described by the
sine-Gordon functional: F � �1=4��2 sin2~���r��2 �
�2K sin~�� cos�. In the case K � 	 � 0, this vortex is
equivalent to a vortex in a neutral superfluid with super-

fluid stiffness �1=2��2 sin2~��. In the case when j�1j
2
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,

for a topological defect where ���1 ��2� � 0 and
���1 ��2� � 4#, the second term in (3) becomes
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2� � cos2�
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r��1��2�
2 � eA
2. This term is non-

vanishing for such a vortex configuration, which means
that this vortex besides neutral vorticity also carries mag-
netic field. Let us calculate the magnetic flux carried by
such a vortex. The supercurrent around the core of this
vortex is J � 2e�2�fsin2�

~��
2� � cos2�

~��
2�g

r��1��2�
2 � eA
. Let

us now integrate this expression over a closed path �
situated at a distance larger than � from the vortex core.
Indeed, at a distance much larger than the penetration
length the supercurrent J, or equivalently the massive
field ~CC, vanishes. Thus we arrive at the following equation:
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2
r��1 ��2�dl � cos~���0 � ~nn3�0; (4)

where � �
H
�A dl is the magnetic flux carried by our

vortex, and �0 � 2#=e is the standard flux quantum. From
(4) it follows that, in our system, such a vortex can carry an
arbitrary fraction of magnetic flux quantum since it de-
pends on the free parameter cos~��, which is a measure of
the relative densities of the two condensates in the system.
In the general case, a vortex characterized by the following
phase changes around the core ��1 � 2#k1 and ��2 �
2#k2 carries the following flux:
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We should emphasize that a straightforward inspection
of (2) shows that this model allows neutral vortices asso-
ciated with the neutral O�2� boson without a nontrivial
configuration of the field ~CC for any values of ~nn3. However,
such solutions (e.g., vortices in the case ~nn3 � 0 character-
ized by �� � 2#; ~CC � 0) are unphysical because these
vortices do not satisfy the condition that �i change by 2#ki
around the vortex core [as follows from (3)]. Thus, while
the original model (1) and the extended Faddeev model (2)
have the same number of degrees of freedom so that the
fields ~nn, ~CC are dynamically independent by construc-
tion, the mapping incurs a constraint on topological defects
in ~nn and ~CC since �1;2 appear in both of them. So, in the
hydrodynamic limit in (2), there is no direct coupling
between the fields ~nn and ~CC; however, in a non-simply
connected space a topological defect in the field ~nn neces-
sarily induces a nontrivial configuration of the field ~CC. The
consequence of this is the fractionalization of magnetic
flux in the model (2).

So the models (1) and (2) allow the following linear
composite topological defects:

(i) ���1 ��2� � 4#n; ���1 ��2� � 0: These are
the vortices which feature neutral superflow. When the
ground state of the variable ~nn corresponds to the equator
on S2 (that is, the case when j�1j

2

m1
� j�2j

2

m2
or, equivalently,

cos~�� � 0), these vortices do not carry magnetic flux.
In the case when cos~�� � 0, the only physical solutions
with neutral vorticity also carry a fraction of magnetic flux
quantum. In the case of nonzero Josephson coupling, these
vortices are described by the sine-Gordon equation (3).

(ii) �� � 0; ���1 ��2� � 4#k: These are the vorti-
ces which feature circular supercurrent and no circular
neutral superflow. Such vortices carry k flux quanta of
magnetic field. One of the physical consequences of
our analysis is that we can observe that, in the two-gap
067001-2
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superconductor (1) and (2), in spite of the existence of two
types of Cooper pairs, a formation of two sublattices of
vortices corresponding to each of the condensates in an
external field is energetically forbidden. This is because the
energy per unit length of noncomposite vortices is diver-
gent in an infinite sample in cases of both zero and nonzero
Josephson coupling (in case of finite 	, a vortex creates a
domain wall which makes its energy per unit length
divergent in an infinite sample [13,14]). We can also
observe that a superconductor made up of one condensate
which is of type-II and another condensate which is of
type-I will, in general, in the presense of an external
magnetic field, form one-flux-quantum vortices involving
both condensates and will preserve two-gap superconduc-
tivity, even if the external field exceeds the thermodynamic
critical magnetic field for the type-I condensate.

(iii) �� � 2#n; ���1 ��2� � 4#l: These are the
vortices which may be viewed as a cocentered l-flux
quanta Abrikosov vortex combined with a vortex with
neutral vorticity with winding number n carrying a frac-
tional magnetic flux. These vortices and the vortices of
type (ii) characterized by ���1 ��2� � 8# could be
unstable against decay into more simple vortices [13].

Besides composite vortices, the system allows vortices
where the phase of one of the condensates changes by
2# around the core, whereas the phase of the second
condensate remains constant. These vortices are also prin-
cipally different from ordinary Abrikosov vortices. Let us
discuss these vortices in the GL formalism (1). This will
provide additional perspective on the discussion and will
allow us to illustrate the connection between the models (1)
and (2). We shall present a solution for these vortices in the
limit when the inverse mass for n1, which is given by the
Josephson term, is larger than the sample size. Such an
approximation allows one to put 	 to zero. We should note
that there certainly exist systems where 	 is exactly zero.
That is, a model with 	 � 0 should describe vortices in a
bilayer system: a superconductor-insulator-superconductor
compound is an example of a system of two condensates
coupled only by a gauge field. In such a system, a vortex in
one layer carries flux through the second layer, where it
also induces a current, which should lead to the flux
fractionalization. Besides that, an additional U�1� symme-
try appears if one considers equal-spin pairing. In that
case, if the spin-orbit coupling is neglected, each spin
population has its own phase, without Josephson cou
pling [15].

Let us recall the GL equation for the supercurrent in
standard notations: J � ie
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phase �1 changes by 2# around the core while the phase of
the second condensate remains constant, we have the
following expression for the vector potential:
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From this expression, it follows that the vortex character-
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ized by ��1 � 2#; ��2 � 0 carries the following frac-
tional magnetic flux:
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Let us now remark on what are the physical roots of this
flux fractionalization. Further examining the solution for
the vortex (��1 � 2#, ��2 � 0), we can write the vector
potential as A �

r�ez
jrj jA�r�j, where r measures the distance

from the core and ez is a unit vector pointing along the
core. The magnetic field is then given by jBj � 1
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The equation for the current J can then be rewritten as
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For such a vortex, the solution for the vector potential is
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Indeed, the magnetic field vanishes exponentially away
from the vortex core with the characteristic length scale
given by the magnetic field penetration length
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In contrast to the Abrikosov vortex [1], besides having
the fractionalization of magnetic flux, our vortex also
features the neutral vorticity. This, in particular, can be
seen by substituting the solution (7) into (1). Then, at
length scales larger than � from the vortex core, we have
the following expression for the energy density: F �
1
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2. Thus the energy per unit

length of the vortex (��1 � 2#, ��2 � 0) is divergent.
This is due to the fact that such a topological configuration
induces in a two-gap system the neutral superflow. Indeed,
the above expression for F is similar to the energy density
of a vortex in a neutral system with effective stiffness
j�1j
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This shows transparently the physical origin of the pres-
ence in the system of a massless neutral boson; a topo-
logically nontrivial configuration (��1 � 2#, ��2 � 0),
besides having a current in the condensate �1, also neces-
sarily induces current in the condensate �2. Albeit in such
067001-3
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a configuration there are no gradients of �2; however, the
two condensates are not independent but are connected by
the vector potential. The admixture of an oppositely di-
rected supercurrent of the condensate �2 leads to the
situation when the two supercurrents partially compensate
the magnetic field induced by each other. This leads to the
existence of the effective neutral superflow in the system.
Moreover, it is the fact that the two currents partially
compensate the magnetic field induced by each other
which leads to the fractionalization of magnetic flux. We
stress that the vortex solutions (��1 � 2#, ��2 � 0) in
this model, albeit being topologically stable, cannot form
as an energetically preferred state in external field. In an
external field the system will form the composite vortices
(��1 � 2#, ��2 � 2#) described above.

There is, however, an experimental setup which should
allow one to directly observe (��1 � 2#, ��2 � 0) ex-
citations. That is, in a two-gap superconducting film, there
should occur thermal creation of pairs of vortices and
antivortices with neutral vorticity and fractional magnetic
flux. The fact that this type of vortex features both confined
magnetic field and long-range interaction due to neutral
superflow will allow (i) detection of the Berezinskii-
Kosterlitz-Thouless (BKT) transition in a system of these
vortices by standard experimental techniques such as flux-
noise measurements or measurements in an applied dy-
namic magnetic field (such as in a system of Abrikosov
vortices [16]). (ii) Such measurements allow one to extract
data about the type of interaction between a vortex and an
antivortex in the system. In spite of being by definition
sensitive only to magnetic flux carrying vortices, these
measurements should give the picture of the BKT transi-
tion such as in a neutral U�1� system. That is, the transition
should be a pure BKT transition but not a ‘‘would-be’’
BKT transition such as in a system of Abrikosov vortices.
As is well known, there is no true BKT transition in a
system of Abrikosov vortices: because their interaction is
screened by the Meissner effect and a BKT transition is
replaced by a crossover which is observable only when
penetration length is sufficiently large [17]. Moreover, the
BKT transition in a system of these vortices should be
observable even in a type-I system and in both limits 	 �
0 and when 	 is large, where one has sine-Gordon vortices
interacting with a linear potential [13].

In conclusion, we have shown that a two-gap super-
conductor allows several types of vortices, such as vortices
carrying an arbitrary fraction of the magnetic flux quan-
tum, which have no counterpart in ordinary one-gap super-
conductors. This study also has interdisciplinary interest
because similar models are highly relevant in particle
physics [5,18].
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