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Shot Noise in Ballistic Quantum Dots with a Mixed Classical Phase Space
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We investigate shot noise for quantum dots whose classical phase space consists of both regular and
chaotic regions. The noise is systematically suppressed below the universal value of fully chaotic systems,
by an amount which varies with the positions of the leads. We analyze the dynamical origin of this effect
by a novel way to incorporate diffractive impurity scattering. The dependence of the shot noise on the
scattering rate shows that the suppression arises due to the deterministic nature of transport through
regular regions and along short chaotic trajectories. Shot noise can be used to probe phase-space structures
of quantum dots with generic classical dynamics.
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shot noise carries valuable dynamical information which Planck cell).
The phenomenon of shot noise, the time-dependent
fluctuations in electrical currents caused by the discrete-
ness of the electron charge e, has been extensively studied
in recent years in mesoscopic systems (for a review, see
[1]). The focus of interest was on classically chaotic
ballistic quantum dots (electron billiards) and on diffusive
quantum wires, which can be investigated theoretically by
applying random-matrix theory [2–4] as well as semiclas-
sical methods [5–7]. For incoherent transport through a
chaotic quantum dot the shot noise would assume the
Poissonian value P0 � 2eG0V, where G0 � Ne2=�2h� is
the serial conductance of the two quantum point contacts
which connect the dot to electronic reservoirs (maintained
at a voltage difference V) by N channels. For low tempera-
tures correlations of electrons due to Fermi statistics sup-
press the noise P by a factor of F � P=P0 relative to this
value of uncorrelated electrons. In chaotic quantum dots
the suppression factor F � F ch � 1=4 is universal [3],
i.e., independent of the details of the system, which also
has been confirmed by an experiment [8]. The origin of the
low-temperature noise is the probabilistic nature of quan-
tum transport, arising from attempts to transmit charge
carriers between electronic reservoirs with a finite success
probability 2 �0; 1�. Very recently, nonuniversal correc-
tions to the shot noise due to residual signatures of classi-
cally deterministic scattering [9] have been discussed by
Agam, Aleiner, and Larkin [10]. They predicted that shot
noise in a chaotic dot can be further reduced below F ch

when electrons pass the dot without sufficient diffraction.
This has been verified in a recent experiment [11].

In this Letter we address the shot noise of generic
ballistic quantum dots. They are not classically chaotic
[12] but possess a mixed phase space, where regular
islands are separated from chaotic seas by impenetrable
dynamical barriers. Signatures of the mixed phase space
in quantum transport have been found in the conductance,
which exhibits fractal fluctuations [13] and isolated re-
sonances [14]. Shot noise can be seen as the second
cumulant of charge counting statistics, with the conduc-
tance being the first cumulant. As we will demonstrate,
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can be extracted systematically. For generic quantum dots
the suppression factor F is found to be systematically
reduced below the universal value F ch for fully chaotic
systems, not only due to the deterministic nature of trans-
port along short chaotic trajectories (this mechanism of
Ref. [10] will be confirmed), but also because quantum
diffraction is strongly reduced for transport through regular
regions, as well.

Our investigation of the dynamical origin of the
additional shot-noise reduction is based on a novel proce-
dure to analyze shot noise (which we obtain from a numer-
ical simulation) with help of the Poisson kernel [15–17],
a statistical ensemble of random-matrix theory [4]. In
the Poisson kernel one averages the scattering matrix
over an energy range Eav, in this way eliminating the
system-specific details of the dynamics with time scales
longer than tav � 	h=Eav, and replaces these by random
dynamics of the same universality class as elastic diffrac-
tive impurity scattering (equivalently, fully chaotic dynam-
ics). (Reference [10] also employed diffractive impurity
scattering; however, there it was used to mimic the
nondeterministic processes of quantum chaos within a
theory that cannot account for them, while in our case
all quantum effects are fully included from the begin-
ning.) The effective mean free scattering time tav can
be tuned by changing the energy-averaging window Eav.
The dependence of the suppression factor F on tav
then allows one to analyze the properties of trajectories
with classical dwell times tdwell ’ tav (up to a possible
factor of order unity), over the large range of dwell
times that is typically involved in the classical transport
through generic quantum dots (in contrast, chaotic dots
are characterized only by a single time scale, the mean
dwell time). The analysis via the Poisson kernel is supple-
mented by a semiclassical estimation of the shot noise,
obtained from classically deterministic motion course
grained over Planck cells while preserving Fermi statistics,
in the spirit of Refs. [6,7]. It follows that shot noise
is suppressed most strongly if the leads are well coupled
to classical regular regions (with area larger than a
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A representative model for mixed regular and chaotic
classical dynamics is the two-dimensional annular billiard
[18], Fig. 1(a), which consists of the region between two
circles with radii R, r, and eccentricity . Two leads
(openings) of width W are attached opposite to each
other at an angle � with respect to the axis through the
two circle centers. The phase space of the closed annular
billiard for r � 0:6R,  � 0:22R is shown in Fig. 1(b),
which displays two regular whispering-gallery (WG) re-
gions, a large regular island, neighboring satellite islands,
and a chaotic sea. Figures 1(c) and 1(d) show the phase
space of the open annular billiard, which includes only
trajectories of particles that are injected into the billiard
through leads attached at � � 0 and � � �=2, respectively
(the width of the leads is W � 0:222R�. The large island is
well coupled to one of the openings for � � 0, and is
completely decoupled from both openings at � � 0:5�.
The chaotic sea and WG regions are well coupled for
arbitrary position of the openings, while the coupling of
the satellite islands depends on � and W. In this way, one
can select regions in phase space by varying � and W.

We computed the dimensionless conductance T � trtyt
and the shot-noise suppression factor F � �2=N�trtyt�1	
tyt� from the transmission matrix t (the dimension of this
matrix is given by the number of channels N in each lead)
[1]. The transmission matrix is obtained numerically by the
method of recursive Green functions [19], for which space
is discretized on a square lattice. In terms of the lattice
FIG. 1. (a) Schematic diagram of the annular billiard between
two circular hard walls of exterior radius R, interior radius r �
0:6R, and eccentricity  � 0:22R. Two openings of width W �
0:222R are attached opposite to each other at an angle � 2
�0; �=2� relative to the line connecting the circle centers. (b)
Phase space, parametrized by the impact parameter s and the
transverse momentum component sin� of trajectories at the
exterior circle. The lower panels show the phase space for
open billiards with � � 0 (c) and � � �=2 (d), for which we
only record trajectories that are injected through the openings
(until they leave the billiard again).
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constant a, R � 144a, r � 86:4a,  � 31:7a, and W �
32a. Energy E will be measured in units of 	h2=�2ma2� and
time in units of 2ma2=	h, with m the mass of the charge
carriers. In these units the mean level spacing � ’ 0:0003.
We will work in the energy window E 2 �0:408; 0:433�, in
which the Fermi wavelength �F ’ 9:5a, resulting in N �
Int�2W=�F� � 6.

The two panels of Fig. 2(a) show T and F , as a func-
tion of energy, for the case that the two leads are attached
at � � �=2. The dependence of the energy-averaged
suppression factor F on � is shown in Fig. 2(b). Our first
observation is that for all values of �, the suppression factor
is smaller than the universal value 1=4 for fully chaotic
motion. Moreover, the shot noise is more suppressed for
the cases that one opening couples to the large regular is-
land (0< � & 0:3�� than for the cases in which the regular
island is decoupled from the openings (� * 0:3��. This
behavior indicates that electrons injected into the large
regular island contribute less to the shot noise.

In order to determine in detail which processes are
responsible for the additional shot-noise suppression, we
introduce a function f�tav� which can be interpreted as the
probability distribution function of deterministic processes
with dwell time tdwell ’ tav. This will be achieved by
monitoring the rate of change of the shot noise,

f�tav� � 	�d=dtav�F �tav�=F ch; (1)

as we successively replace the dynamics on time scales
* tav by fully chaotic dynamics (equivalent to diffractive
impurity scattering). The function f is normalized to the
total shot-noise suppression

R
1
0 dtavf�tav� � 1	F =F ch,

taken relative to the universal value of chaotic dynamics.
The transmission matrix t determining T and F is a

subblock of the scattering matrix

S �

�
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FIG. 2. (a) Dimensionless conductance T�E� and shot-noise
suppression factor F �E� for leads attached at � � 0:5�.
(b) Energy-averaged suppression factor as a function of lead
position �.
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FIG. 3. (a) Shot-noise suppression factor F as a function of the
strength of diffractive impurity scattering with a rate
’ Eav=	h, for different positions � of the leads. (b) Distribu-
tion function f�tav� of deterministic processes.
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where r and r0 are reflection coefficients and the trans-
mission matrix t0 contains the same information as t. The
elimination of the system-specific details on time scales
* tav is achieved by averaging the scattering matrix S over
an energy range �E0 	 Eav=2; E0 � Eav=2� of width Eav �
	h=tav (which will be taken inside the total energy range
[0.408,0.433] of our numerical simulation),

S�Eav;E0� � E	1
av

Z E0�Eav=2

E0	Eav=2
dES�E�: (3)

Here the information on processes with longer time scales
than tav is lost, because it is encoded into the short-range
energy correlations (fluctuations) of the scattering matrix
[20], while the information on the dynamics on shorter
time scales than tav modulates the scattering matrix on
larger energy scales and hence is retained. Chaotic proc-
esses are then introduced to substitute the eliminated ones
by coupling to an auxiliary chaotic system with scattering
matrix S0, taken from the appropriate circular ensemble of
random-matrix theory (observing the same symmetries as
the original scattering matrix, as time-reversal or spatial
parities [21]), resulting in

S0�Eav;E0; S0� � S�Eav;E0� �T 0�1	 S0R�	1S0T :

(4)

The ensemble of scattering matrices (4) is the so-called
Poisson kernel [4,15–17], with S the so-called optical
scattering matrix. The coupling matrices T , T 0, and R
must be chosen such that S0 is a unitary matrix, but the
invariance of the circular ensemble guarantees that results
do not depend on their specific choice.

We now can calculate the mean suppression factor
F �Eav� for fixed Eav (and hence fixed tav), first by averag-
ing the noise within each Poisson kernel (fixing also E0),
and then averaging these values over E0 2 �0:408; 0:433�.
The result for different positions of the leads is shown in
Fig. 3. The value F �Eav � 0� is identical to the suppres-
sion factor F shown in Fig. 2(b), because the Poisson
kernel becomes a delta function at S�E0� as S approaches
this unitary matrix for Eav ! 0. For increasing Eav the
suppression factor F �Eav� approaches the universal value
F ch of random-matrix theory, because S � 0 in this limit.
The function F �Eav� is monotonically increasing almost
everywhere (negative values of the slope are within the
statistical uncertainty in the numerical simulation), indicat-
ing that the noise is enhanced by the replacing the system-
specific deterministic details of the transport by the
indeterministic transport of random-matrix theory. Con-
sequently, as shown in Fig. 3(b), the function f�tav�
introduced in Eq. (1) is positive and hence allows the
interpretation of a probability distribution function of
deterministic scattering.

The most striking feature in Fig. 3 is that F �Eav� rises
quickly in the three cases � � 0, 0:1�, 0:2�, in which
the leads couple to the large regular island in phase
space, while the slope of F �Eav� almost vanishes up to
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an energy Eindet � 0:002 for � � 0:4�, 0:5� (where the
regular region is decoupled). The distribution function
f�tav� decays only slowly in the former case, while it
vanishes almost identically beyond a time tindet � 500 in
the latter case. This difference can be interpreted as fol-
lows: Wave packets are trapped for long times in regular
regions, but show only little dispersion because of the
stability of regular trajectories [22]. Hence, the scattering
is deterministic and strongly affected by introducing dif-
fractive scattering even at these long time scales. On the
other hand, wave packets disperse quickly in the chaotic
regions, where the transport is already indeterministic for
tav * tindet, and this is not modified by adding diffractive
scattering. The shot-noise suppression for � � 0:4� and
� � 0:5� hence arises from short chaotic trajectories with
dwell times & tindet. This is in accordance with the pre-
dictions of Ref. [10]; chaotic quantum transport is deter-
ministic up to the Ehrenfest time �1=�� ln�2�R=�F� ’ 500,
estimated from the Lyapunov exponent � ’ vF=R and the
Fermi velocity vF. Thus f�tav� reveals system-specific time
scales as the Ehrenfest time in chaotic regions and long
dwell times in regular regions. Moreover, f�tav� vanishes
for tav & mintdwell ’ 50 (not resolved in Fig. 3).

Our interpretation is confirmed by a semiclassical esti-
mate which discriminates the contributions to the shot
noise from different regions in phase space. We divide
the phase space into Planck cells of area 2W=�NR� and
calculate the fluctuations in the semiclassical occupation
numbers of these cells. The average occupation number
fj � TjLfL � TjRfR is obtained from the classical trans-
mission probabilities TjL;R from cell j to the left (L) and
right (R) opening, respectively, where fL;R is the Fermi
distribution in the electronic reservoirs attached to each
066801-3
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FIG. 4. Semiclassical estimates of F and f of Fig. 3, obtained
by introducing indeterminism into the classical dynamics be-
yond a given dwell time tdwell � 	h=Edwell.
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opening. Within the model of minimal correlations of
Ref. [7], the shot-noise suppression factor is then approxi-
mated as F cl � hfj�1	 fj�i, where h� � �i denotes the
average over the phase space cells at the openings.

Diffractive scattering can be introduced into the semi-
classical theory by replacing the classical transmission
probability of trajectories longer than a given dwell time
tdwell by the value 1=2 of ergodic dynamics. [The universal
value of shot noise for chaotic dynamics follows from the
ergodic value fj � 1=2.] Figure 4 shows the resulting
F cl�Edwell� and fcl�tdwell�, with Edwell � 	h=tdwell. The
same relative time scales for the different positions of the
leads are found as in the exact results in Fig. 3. The
agreement is reasonable given that we are not deep in the
semiclassical limit and accounting for the fact that the
model of minimal correlations in Ref. [7] originally was
devised for chaotic dynamics. The suppression factor can
be further decomposed into contributions of different re-
gions in phase space. For � � 0, F cl�Edwell� initially in-
creases due to the large regular island and then due to
deterministic processes in the chaotic sea, while for � �
0:5� it is constant up to Edwell ’ Eindet. Unlike the large
regular island, the regular WG regions (which we have
ignored so far in our discussion) contribute to shot noise
with the universal value, because for the present system
parameters Planck cells do not yet resolve reflected from
transmitted trajectories which are injected into these re-
gions. One can see from the model of minimal correlations
that shot noise eventually will be suppressed also in the
WG regions when the semiclassical limit is approached.
The same holds for the hierarchical structure of small
regular regions embedded in the chaotic part of phase
space. A pronounced shot-noise suppression should arise
once that these trapping regions are resolved, because in
066801-4
the vicinity of stable structures the Ehrenfest time depends
only algebraically on 	h [22].

In conclusion, we have demonstrated that shot noise
is a measure of the amount of deterministic transport
through generic quantum dots. The dynamical analysis
developed in this work may be used to study time scales
in a large variety of systems. Experimentally, these time
scales could be probed by measuring shot noise while
tuning the indeterministic scattering rate by adjusting a
gate voltage [23].
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[18] O. Bohigas, D. Boosé, R. Egydio de Carvalho, and

V. Marvulle, Nucl. Phys. A 560, 197 (1993); E. Doron
and S. D. Frischat, Phys. Rev. Lett. 75, 3661 (1995).

[19] H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, and A. D.
Stone, Phys. Rev. B 44, 10 637 (1991).

[20] Y. V. Fyodorov and H.-J. Sommers, J. Math. Phys. (N.Y.)
38, 1918 (1997).

[21] H. U. Baranger and P. A. Mello, Phys. Rev. B 54, 14 297
(1996); M. Martı́nez and P. A. Mello, Phys. Rev. E 63,
016205 (2000).

[22] F. Cametti and C. Presilla, Phys. Rev. Lett. 89, 040403
(2002).

[23] E. Toyoda, H. Takayanagi, and H. Nakano, Phys. Rev. B
59, R11 653 (1999).
066801-4


