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Self-Diffusion Rates in Al from Combined First-Principles and Model-Potential Calculations
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Monovacancy diffusion alone dominates over diffusion due to divacancies and interstitials in Al for all
temperatures up to the melting point. Deviations from a single Arrhenius dependence are due to
anharmonicity. The conclusion is based on a combination of theoretical methods, from density functional
theory to thermodynamic integration, without fitting to experimental data. The calculated diffusion rate
agrees with experimental data over 11 orders of magnitude.
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pressure is governed by a formation enthalpy, H , and a
formation entropy, Sf ,

tests were performed for the vacancy (using cells consist-
ing of 32, 80, 108, and 125 lattice points) and for the
Atomic scale simulations from first principles, in par-
ticular, density functional theory (DFT) [1], provide ex-
cellent information about zero-temperature properties of
materials. Connecting this knowledge to the properties at
the macroscopic scale and at high temperature, on the other
hand, is not straightforward. In this Letter we show how
this can be achieved through a combination of theoretical
methods, based on atomic scale calculations without ad-
justable parameters.

We have focused on the specific case of vacancy migra-
tion in Al. Vacancy migration is the dominating mecha-
nism for self-diffusion in most elemental crystals and has
been extensively studied. Much is known [2–4], but the
detailed interpretation of high-temperature data is intrinsi-
cally difficult and open questions remain. For instance, the
contribution from more mobile defects, i.e., divacancies
and interstitials, to the diffusion process, and the role of
anharmonicity in the atomic vibrations need to be simulta-
neously considered. In theoretical calculations claiming
predictive power, this should be done without fitting to
experimental data.

Combining several theoretical methods, we show that
the self-diffusion in Al is solely due to vacancy migration,
for all temperatures up to the melting temperature, an
explanation that has been under debate [2,5,6]. We obtain
the effective high-temperature diffusion barrier to within
5% of the experimental value. There is also an excellent
agreement with the absolute diffusion rate, D. Our work
extends previous calculations of the vacancy concentra-
tion, cv, in Al [7]. That work showed that the divacancy is
energetically unstable at T � 0 K and unnecessary for the
understanding of vacancy concentration data. It may still
(like the interstitial) contribute to the self-diffusion at high
T if the migration free energy is sufficiently low and is
therefore included in the present analysis. After giving the
basic definitions, we in detail describe the computational
methods used, in particular, how they are connected, before
presenting the results.

The equilibrium concentration c of a defect at zero
f
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c � gfeS
f=kB�Hf=kBT

; (1)

where T is the temperature, kB is Boltzmann’s constant,
and gf is a geometrical factor. The defect migration rate �
is

� � gm�0e�Hm=kBT
; (2)

where Hm is a migration enthalpy, �0 is an attempt fre-
quency that may be expressed in terms of a migration
entropy, and gm is a geometrical factor. At elevated tem-
peratures, Hf , Hm, Sf , and �0 are in general temperature
dependent. The connection with static quantities is made
through lattice dynamics theory and transition-state theory
(TST) [8]. Assuming harmonic vibrations, Hm then is
given by the relaxed transition-state energy (relative to
the defect state) and Hf by the relaxed defect state energy
(relative to the bulk). The diffusion barrier, HD �
Hf �Hm, is thus possible to calculate directly using first-
principles methods. With some more effort, Sf and the TST
prefactor �TST

0 are obtained from vibrational frequencies in
the transition state, defect and bulk systems. A first-prin-
ciples calculation of the diffusion rate, using harmonic
TST, has been reported for, e.g., Li [9].

We begin with presenting DFT calculations of the for-
mation enthalpies for the vacancy, the divacancy, and the
h100i-dumbbell interstitial, and of the migration enthalpy
for the vacancy, in Al. Defect formation parameters were
obtained by comparing relaxed defect and bulk systems at
zero pressure. The transition state was found by the nudged
elastic band method [10], at constant volume. The calcu-
lations used VASP [11], a code well suited for computa-
tional materials physics. The Kohn-Sham equations [1] are
solved in a plane-wave basis set, and the ions are described
using ultrasoft pseudopotentials [12]. We used the PW91
functional [13], a generalized gradient approximation
(GGA), because of its properties for bulk Al [7]. Most
DFT calculations reported here were done in a unit cell
with 4� 4� 5 lattice points. The bulk cell thus include
80 atoms, the vacancy cell 79 atoms, the divacancy cell
78 atoms, and the interstitial cell 81 atoms. Convergence
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TABLE I. Convergence test for Al vacancy and interstitial.

Cell size Ev (eV) Ei (eV)

32 0.52
80 0.54 2.43

108 0.54 2.43
125 0.54
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interstitial (80 and 125 lattice points); see Table I. The
convergence tests show that the 80 lattice-point cell is large
enough for our purpose. The Brillouin zone was sampled
using a 4� 4� 4 mesh of k points and the cutoff energy
for the plane-wave coefficients was 130 eV. Given the size
of the system in real space and the ultrasoft pseudopoten-
tials these choices ensure that the electronic structure is
converged.

The difference between propagating and evanescent
wave functions causes both GGA and local density ap-
proximation to make errors at surfaces [14], and the error
in energy is proportional to the surface area. Evanescent
wave functions occur at a vacancy, making it necessary to
adjust vacancy formation energies [7]. Mattsson and Kohn
[14] have formulated a correction scheme for this error by
using a reference system; a suitable reference is the half-
jellium system [15]. We correct the vacancy migration
energy by estimating the difference in exposed surface
area between the transition state and the minimum energy
state. At the transition state the migrating atom divides the
‘‘vacancy volume’’ into two pieces. Assuming that the
volume is kept constant the area depends on the geometry
of the two voids. The calculated GGAvalue for the vacancy
migration barrier is 0.545 eV and the corrected Hm

v is
0:60� 0:02 eV, with the estimated error stemming from
the area at the transition state [16].

At high temperatures (T > Tm=2, Tm being the melting
point), anharmonicity in the interatomic forces makes the
formation and migration enthalpies temperature depend-
ent. To deal with this, and to obtain formation and migra-
tion entropies, we used the Ercolessi-Adams (EA) model
potential [18] (MP) of the pair-functional form [19], which
implies central forces. Al is a free electron metal where
directional bonds are important only at very low coordina-
tion numbers (three), affecting, for example, surface dif-
fusion [20]. Modeling metals with directed bonds also in
the bulk requires more elaborate potentials, thus increasing
TABLE II. Defect formation enthalpies Hf and entropies Sf , mig
harmonic approximation, and compared with experiments [17]. Data
in units of eV for enthalpies, kB for entropies, and the Debye frequ

Hf
v Sfv Hm

v �TST
0;v Hf

2v

DFT/GGA 0.69 [7] 0:60� 0:02 1:46 [7
MP/EA 0.69 1.14 0.61 2.69 1.38
exp. 0.68 0.7 0:61� 0:03

065901-2
the computational demands. The potential used here is
fitted to first-principles data for bulk and defect systems,
at zero and finite temperatures. It should, therefore, be well
suited for extending our first-principles results to include
thermal properties. Table II confirms that the MP well
describes key properties of divacancies and interstitials,
which were not included in the fitting of the potential.

We calculated the low-temperature defect formation
entropies and TST prefactors via the eigenvalues of the
force-constant matrix [8,21]. Standard routines were used
to keep zero pressure. Most of these calculations were done
for systems consisting of 500 lattice points. Those values,
and DFT and MP formation and migration enthalpies, valid
in the harmonic approximation, are presented in Table II.
The concentration dependence of the formation parameters
was estimated by repeating the calculations for the vacancy
and the interstitial in 2048 lattice-point systems. Compared
with the values given in Table II, Hf

v and Sfv differed with
4� 10�4 eV and 0:02kB, while Hf

i and Sfi differed with
0.007 eV and �0:09kB. We conclude that, for the small
concentrations at hand, the defects may be treated as non-
interacting. For the vacancy migration barrier, a MP cal-
culation performed at constant volume gave a difference of
5� 10�4 eV, showing that the correction to the DFT value
due to the choice of boundary conditions is small.

We now proceed with considering the temperature de-
pendencies of the defect formation enthalpies, obtained in
long molecular dynamics (MD) simulations of isolated
defects. Constant temperature and zero pressure conditions
were achieved using standard techniques [22,23]. During
such a simulation the defect will migrate, and jump fre-
quencies can be derived simultaneously. The divacancy
migrates by one of the four atoms surrounding the diva-
cancy’s ‘‘waistline’’ jumping into a vacant site. However,
occasionally, one of the other 14 atoms surrounding the
divacancy will perform a jump, thus leading to divacancy
splitting. In our simulations, this was avoided by monitor-
ing a set of reaction coordinates i � ��rri �

1
4

P
4
j�1 �rrj	 �eei,

where i refers to one of the 14 atoms, j to the four atoms
that constitute the bottleneck for the jump into the vacant
site, and �eei to the jump direction. When any  exceeded 0,
it was reflected back by applying a harmonic force.
Calculated temperature dependencies of Hf are presented
in Fig. 1. The result for vacancies essentially reproduces
the one in Ref. [7]. The other curves show a similar trend,
but we note that the anharmonic increase in the interstitial
ration enthalpies Hm, and rate prefactors �TST
0 calculated in the

for vacancies (v), divacancies (2v), and interstitials (i) are given
ency �Debye � 8:4 THz for rate prefactors.

Sf2v Hm
2v �TST

0;2v Hf
i Sfi Hm

i �TST
0;i

] 2.43
2.50 0.27 2.01 2.47 5.19 0.16 0.40

0.50 3.0 0.115
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FIG. 2. Jump frequencies, �, for vacancies (v), divacancies
(2v), and interstitials (i) from direct MD simulations (open
symbols). Estimated errors are smaller than the symbols.
Dashed lines indicate harmonic TST rates and filled squares
are TST/TI results for vacancies. The region of overlap between
direct MD and TST/TI calculations is shown in the inset. The
solid line connects the TST/TI calculations performed at the
same temperatures as the direct simulations.
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FIG. 1. Formation enthalpies for vacancies (v), divacancies
(2v), and interstitials (i), obtained in MD simulations.
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formation enthalpy transfers to a large increase in effective
entropy [Sfi �T � Tm	 
 9kB]. This is believed to be a gen-
eral feature of the interstitial [24].

Defect concentrations were calculated by integrating the
relation @H

@T � T @S
@T from T � 0, where the constant of in-

tegration is given by Sf in Table II.
Defect migration rates were obtained by continuously

keeping track of the position of the defect during the MD
simulations [5]. To do this unambiguously, copies of the
system were repeatedly quenched and each atom was as-
signed to a lattice point. This quenching was triggered by
monitoring suitably selected reaction coordinates. For the
vacancy, for instance, i defined as above, for the 12 atoms
surrounding the vacancy was monitored. If any  exceeded
l=4, it was regarded as a jump, a copy of the system was
relaxed, and new lattice points and ’s were found. This
procedure did not affect the evolution of the simulation.
Divacancy and interstitial migration rates were obtained
similarly.

At temperatures below about 0:75Tm, the vacancy jump
frequency is too low for ‘‘direct’’ simulations to be fea-
sible. We then used a thermodynamic integration (TI)
technique, as described by Boisvert et al. [25], which
accounts for return jumps as well as anharmonicity. The
free energy required to bring the jumping atom adiabati-
cally from the initial state to the transition state was
calculated in 100 steps over a total of 2–4 ns. In these
simulations the other atoms were prevented from jumping
into one of the ‘‘half vacancies’’ by a technique similar to
that used in the divacancy simulations. At the highest
temperatures used here, this occurred with an average
interval of 25 ps. It should not affect the results signifi-
065901-3
cantly. Separate calculations with the system constrained at
 � 0 were also carried out. In intervals of 2 ps the con-
straint was released and  was followed both forwards and
backwards in time. Inspection of the jump trajecto-
ries showed that � � 0:8 and does not vary notably with
temperature.

Defect migration frequencies calculated within the har-
monic TST and in direct simulations, and vacancy migra-
tion rates calculated indirectly through TST/TI, are
presented in Fig. 2. The temperature ranges for the direct
vacancy simulations and the TST/TI calculations overlap
at T � 750, 800, and 850 K, thereby allowing a direct
comparison between the methods. The agreement is ex-
cellent, with deviations less than 5% in �v (see the inset in
Fig. 2), in line with previous results [25].

Finally, we calculate the macroscopic diffusion rate of a
marked tracer atom as Dtr � 1

6 l
2fc�, where the correlation

factor f equals 0.78, 0.49, and 0.44 for vacancies, diva-
cancies and interstitials, respectively [26,27]. The calcu-
lated diffusion rate Dtr is shown in Fig. 3. The contribution
from divacancies and interstitials is less than 1% of that
from vacancies at the melting point. Vacancy migration is
seen to explain the measured tracer diffusion rates to within
a factor of 2. The discrepancy corresponds to an error of
0.05 eV in the thermal barrier HD, which is comparable to
the estimated error in our first-principles calculation of Hm

v .
The anharmonic increase in HD from T � 0 to T � Tm is
065901-3
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FIG. 3. Self-diffusion constants, obtained in model potential
MD simulations. Open and filled circles are experimental data
[3]. The inset shows calculated diffusion constants for vacancies
(v), divacancies (2v), and interstitials (i). The contribution from
divacancies and interstitials is less than 1% of that from vacan-
cies at the melting point.
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about 10%, leading to a high-temperature value of 1.43 eV,
to be compared with the experimental value 1.48 eV.

The significant discrepancy between tracer diffusion
data and nuclear magnetic resonance (NMR) data (see
Fig. 3) has been discussed in detail in Ref. [6]. The authors
did not arrive at a definite conclusion. Our calculations
strongly support the tracer diffusion data. We also note that
our calculated Dtr agree to within a factor of 2 with low-
temperature diffusion data (350 K< T < 500 K) based on
transmission electron microscope observation of void
shrinkage [3].

In conclusion, we have found that the monovacancy
alone accounts for measured self-diffusion constants in
Al, for all temperatures up to the melting point. Our
calculations agree with experimental data spanning 11 or-
ders of magnitude and, more importantly, add key new
insights into the diffusion processes. This shows the pros-
pect of modeling macroscopic, high-temperature processes
by combining different theoretical methods.
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