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Rejuvenation and Overaging in a Colloidal Glass under Shear
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We report the modifications of the microscopic dynamics of a colloidal glass submitted to shear. We use
multispeckle diffusing wave spectroscopy to monitor the evolution of the spontaneous slow relaxation
processes after the samples have been submitted to various straining. We show that high shear rejuvenates
the system and accelerates its dynamics, whereas moderate shear over-ages the system. We analyze these
phenomena within the frame of the Bouchaud’s trap model.
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The physical properties of glassy systems such as super-
cooled liquids, spin glasses, amorphous polymers, and
colloidal glasses are well known to evolve slowly with
time. This phenomenon is called aging. The out-of-equili-
brium nature of these systems compels their physical prop-
erties to depend on two times as shown by both theoretical
and experimental studies. The first time is the age of the
system, i.e., the time spent in the glassy phase. The second
time is the time elapsed since the measurement started.
Consequently, a well controlled history is a key require-
ment for obtaining reproducible results. The most common
way to control the history is to quench it from an equili-
brium state at high temperature into an aging state at low
temperature. Since the system is at equilibrium at high
temperature, all the history preceding the quench is erased
and a complete rejuvenation of the physical properties is
achieved. For colloidal glasses, however, temperature may
not be a practical parameter. Liu and Nagel recently sug-
gested [1] that shear may act equivalently to temperature
for such materials. Indeed, a high shear proves to be able to
be erased from the memory for these systems and thus to
completely rejuvenate them [2,3]. In that sense the cessa-
tion of a shear is similar to a temperature quench.
Moreover, different approaches were recently introduced
to describe the coupling between mechanical deformations
and aging phenomena [4,5]. However, quantitative experi-
ments are still lacking to determine unambiguously how
shear acts on a microscopic level and how it should be
introduced in a mean field model.

In this Letter we report nontrivial shear effects on a
dense solution of polybeads. We show that theses effects
can be mimicked by temperature changes in the
Bouchaud’s trap model [6]. Our underlying physical pic-
ture is the following: slow relaxations, of characteristic
time 7, are determined by the structural rearrangements
of the particles. The dynamics slows down with the age ¢,,
of the system as the beads find more and more stable
configurations. 7 is thus an increasing function of 7.
Since a shear flow seems to be able to completely rejuve-
nate the system, one could imagine that it shuffles the
beads’ arrangements. The resulting configurations could
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be less stable. The dynamics of rearrangements would then
be accelerated and the relaxation time 7 would decrease.
Oppositely, one could imagine that a moderate oscillatory
strain is able to help the system to find more stable, though
always noncrystalline, configurations. The dynamics
would then be slowed down, and 7 would be increased.
In order to elucidate these two contradictory pictures, we
experimentally tested the effect of an oscillating shear
strain on the evolution of the microscopic dynamics of
our dense suspension. The sample is a commercial suspen-
sion of polystyrene spherical beads of diameter 162 nm
copolymerized with acrylic acid (1%) that creates a
charged corona stabilizing the microspheres. It is concen-
trated by dialysis to a volume fraction ¢ = 49%. Because
of the hairy corona surrounding our particles, this volume
fraction is high enough to lie in the glass region of the
phase diagram.We use multispeckle diffusing wave spec-
troscopy (MSDWS) to probe the slow relaxation dynamics
of the system after various strain histories. MSDWS is an
extension of regular DWS, a technique that measures the
average displacement of the particles through the intensity
fluctuations of multiply scattered light. Whereas DWS
performs a time average of the fluctuations, MSDWS
makes a spatial average of them. It is thus a well suited
technique to study slow transient phenomena such as aging
processes. A precise description of the technique can be
found in [7]. It allows one to measure in real time the two
times intensity autocorrelation function g,(¢, + ¢, t,) =
L’)I({)), where ¢, is the reference time and ¢ the elapsed
time since #,,. The average (- - -) is spatially performed over
the speckle pattern. This correlation function is a decreas-
ing function of the number of rearrangements that occurred
between t,, and t,, + t as demonstrated in [8,9]. Thus the
principle of the whole experiment is the following: the
suspension is submitted to different shear history detailed
below; the modification of its dynamical properties is
recorded after shear cessation. The sample is placed in
a custom-made shear cell consisting of two parallel
glass plates with a variable gap. For all presented experi-
ments, the gap was set to 1.3 mm. Oscillatory straining
was realized by moving the bottom plate, thanks to a
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piezoelectric device. The shear cell was synchronized with
the light scattering detection via a PC. For optical consid-
erations, backscattering geometry was used. We confirmed
that the suspension did not slip on the wall by checking that
we obtained identical results for various gap size.
Moreover, no macroscopic crystallization was observed.
All the experiments were performed at room temperature.
In order to increase the signal to noise ratio, each test
presented in this paper was performed 10 times and each
correlation function was averaged over 10 experiments.
The reproducibility was check to be better than 5%.

We first submit the sample to a series of 40 oscillations
for different strain amplitudes y. For v > 20% the meas-
urement after the shear cessation becomes insensitive to
the shear strain amplitude showing that the rejuvenation is
then total. The age #,, of the system is defined from the
shear cessation as usually done for temperature quench.
Figure 1 shows the correlation function versus ¢ for differ-
ent values of ¢,,. This set of curves displays two important
features: on the one hand, in the region where r K 5 X
1072 s, all the curves overlap. The correlation functions
show an initial decrease that is the end of a short time
relaxation. It corresponds to restricted thermal fluctuations
of the particles and is called the 8 mode. This fast mode is
not affected by shear as predicted by the models [5]. On the
other hand, in the long time limit, we observe a slow decay,
known as « relaxation, typical of glasses. This decay from
the pseudoplateau region is all the slower as the system is
older. It thus means that the average rate of the structural
rearrangements decreases with ¢,,. We arbitrarily define the
structural relaxation time 7/, for this regime so that
g2(t, + 712, 1,,) — 1 = 0.06. The inset of Figure 1 shows
that 7, /, oc 1596098 for r, > 1's. The aging part of the
correlation function can be rescaled with the reduced var-
iable L [(r + 1,)! 7+ — fi *]with u = 1.06. In addition,
the shape of the correlation function is invariant by such a

2 o1p 4
AN - 3

o r ]
0.01 | -

; MEERETTT] B IR T TTT B R SR AT c vl ]

0.01 0.1 1 10 100 1000

t (sec)

FIG. 1. The intensity autocorrelation function g,(t,, + f, t,,) —

1 for different ¢,, ranging from 0.5 to 10° s. The first decrease at
short times comes from the tail of the § relaxation. The long
term decrease is due to the structural relaxation. The inset shows
71/, in seconds Vs 1,,. Ty scales as £5,06=0-08,
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scaling. This result is a typical feature of the aging process
and is qualitatively similar to that found for rheology of
such systems [2,3,10].

In order to better understand the influence of shear on
the dynamics of the particles, we apply to the system the
strain history described in Fig. 2(a). The sample is first
submitted to an oscillatory strain of amplitude 30% at 1 Hz
during 40 s in order to rejuvenate it totally. Second, we let
it age at rest for 10 s. Then, a second burst of 1 Hz
oscillations is applied during 7,. After its cessation, we
examine how the amplitude y and the duration ¢, of the
burst have modified the dynamical properties of the
sample. t,, is now referenced from the end of the second
burst.

Figures 2(b) and 2(c) display the relaxation time 7/, as
a function of ¢, for different strain amplitudes, with ¢, =
1 s and t; = 100 s, respectively. Two limit cases can be
considered: that of a complete rejuvenation during the
second burst, corresponding to the reference curve of
Fig. 1, and that of y = 0% where the system is unperturbed
during the second burst. These two limit curves are the
same but shifted in time by t;, = 10 s + #,. They merge at
long time because of the log scale. For the duration of the
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FIG. 2. (a) Strain history. (b) 7, for #;, = 11 s and different
strain amplitudes y = 0% (<), 2.9% (A), 7.9% (O), 11.7%
(0), and the reference curve (®). 71/, decreases monotonically
with the strain amplitude at short times. For f,, ~ t, all curves
merge. (¢) 7y, for ¢, = 110 s for the same strain amplitude. 7,
for y = 2.9% and 7.9% is superior to y = 0% in the long time
regime.
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second burst f;, = 1 s [Fig. 2(b)], we observe that its effect
is to rejuvenate partially the system: for any ¢, the relaxa-
tion time is a monotonically decreasing function of y. All
the curves lie between the two limit case curves. This is
coherent with the idea that the shear has to be strong
enough to rejuvenate totally the system. However, if
the system is left longer under shear, the modification of
its dynamic is then dual. When 7; = 100 s [Fig. 2(c)], in
the limit of short #,,, the relaxation time behaves similarly,
as previously described. However, for longer ¢, the relaxa-
tion time after a moderate strain (see, e.g., ¥ = 7%) is
surprisingly longer than the one for the sample without
solicitation during the second burst. In other words mod-
erate shear strain results in a system with a slower relaxa-
tion time. We call this overshoot in the relaxation time
over-aging. This definition is loose, and a more precise one
will be given after a more complete analysis. Let us also
note that for large strain amplitudes a total rejuvenation
is recovered as exemplified by the curve for y = 11.7%
in Fig. 2(c).

This experiment is thus contradictory with the simple
idea that strain or stress always rejuvenates the system and
accelerates the dynamics. It shows that a transient strain
changes not only the average value of the relaxation time
but also the distribution of relaxation times within the
sample. The change of the distribution is clearly demon-
strated by the crossing of the curves in Fig. 2(c): two
similar systems with the same relaxation time and different
histories can evolve differently. The shape of the correla-
tion function is also altered by the change in the distribu-
tion of relaxation time as demonstrated in Fig. 4(a). Similar
modifications of the shape of the response function have
already been noticed on spin glasses after a temperature
step; see Fig. 5 of Ref. [11]. We note that microscopic
aging models including shear in their equations were
solved only with a steady shear. To our knowledge, no
calculation of the modification of the microscopic dynamic
after a transient shear has been performed for these models.
This problem will be addressed in a future work [12].
However, we point out here the similarity of over-aging
after a transient shear stress and the predictions of the trap
model [6] after a temperature step. This model describes
the motion of noninteracting particles hopping in an energy
landscape with wells of depth E. The distribution of the
wells of depth p(E) is fixed a priori. P(E, t) is the proba-
bility for a particle to be in a trap of depth E at time ¢. The
evolution of P(E, t) is simply governed by thermally acti-
vated hopping and is written as

JP(E, t
PED — pE e+ X0p(E) (1)
where T is the thermal energy and I'(¢) =

[& P(E, t)e ®/TdE' is the average hopping rate. The
time unit (tu) is set to 1. Following [6], we take p(E) =
exp(—E/T,). For T > T,, P(E,t) has a stationary limit
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P(E, t) < exp[(1/T — 1/T,)E]. For T <T,, P(E, t) has no
stationary limit and keeps evolving with time with a dy-
namics scaling as ;. We solved numerically Eq. (1) for a
quench from T = oo to T = 1 T,. The energy distribution is
presented by the dotted line in Fig. 3(b). As expected, it
shifts progressively with time towards deeper and deeper
energy wells. The relaxation times of the system thus
become longer and longer. In order to mimic the strain
sequence of Fig. 2, we now solve the model for the follow-
ing temperature history: The system is quenched from
infinite temperature to T = 1 T,. After a delay of 100 time
units (tu) the temperature 7T is raised to 7 = %Tg + AT
with AT = % T,, during 300 tu, then quenched back to % T,.
t,, 1s referenced after the second quench.The solution is
plotted in the continuous line.

Figure 3(b) shows that shortly after the system is heated
back [(1)] the small energies [arrow («) in Fig. 3] are
overpopulated, intermediate energies [()] are depleted,
and high energies [(7)] remain unperturbed compared to
the reference case where no temperature step is applied.
The system ages then in a higher temperature state. When
the second quench happens [(2)], both low and high en-
ergies are overpopulated, whereas intermediate ones are
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FIG. 3. (a) Temperature history. (b) P(E, t,,) vs E for various
t,,. The (A) curve corresponds to the reference case; the full line
corresponds to the case with a step (AT = %Tg). Notice that 1 tu
after the sample is reheated (1) the small energies are over-
populated, the intermediate ones are depleted, and the large ones
remain unchanged. At 1 tu after the second quench (2) both
small and large energies are overpopulated. At 3000 tu after the
second quench, small energies and intermediate energies are
depleted, whereas large energies stay overpopulated.
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FIG. 4. (a) g,(¢t, +1,1,) — 1 for £, =1s for y=0% (e)

and for y =7.9% (A). The inset shows similar curves for
C(t,, +t,t,) calculated at ¢, = 0.1 tu and AT =0 () and
for AT = %Tg (A). Notice that for AT = %Tg the curves first
decrease more rapidly (small energies overpopulated), then lies
over the reference one (large energies overpopulated). The
agreement is qualitatively excellent. (b) 7/, calculated from
C(t,, + 1, t,) vs t,, for various AT = 0% (bold line), ll—ng (—),
%Tg (..), %Tg (-..-), and the reference curve (bold line). Notice
the presence of over-aging in the long time regime. Qualitative
agreement with Fig. 2(b) is satisfactory.

depleted. After a while [(3)] low energies recovered their
reference population, whereas high energies stay over-
populated compare to the case without temperature step.
The system has consequently a longer average relaxation
time. Actually, we do not measure P(E, t) directly, but we
probe it experimentally via g(z + 7, 7). The correlation
function g, is a monotonically increasing function of the
probability that a particle has not changed trap between z,,
and ¢ + ¢t,,. Within the frame of this model this probability
can be written

Cc(t, +tt,) = f oo P(E, t,,) exp[—te E/T]dE.
0

Figure 4(a) shows the change in the shape of the experi-
mental correlation function 1 s after the shear cessation. It
compares the case y = 0 with y = 5.9%. Notice that when
a shear has been applied the decay is faster at short times
and becomes slower at long times. The reference and the
perturbed curves can then cross each other. The inset shows
C(t,, +1,t,) calculated at 0.1 tu after the temperature step.
It compares the case AT = 0 with AT = {T,. The modi-
fication in P(E, t,,) due to the step temperature is reflected
in the change of the correlation shape: the decrease is
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quicker at short times (overpopulated low energies) and
slower at long times (overpopulated high energies). We
observe an excellent qualitative agreement between the
two sets of curves. This agreement is reinforced by
Fig. 4(b), which shows the calculated 7,/, for different
AT. The calculated 7/, are defined so that C(z, +
T2 t,) = 0.5. Figure 4(b) is qualitatively similar to
Fig. 2(c).

We can now define properly over-aging. It is the fact that
the long time tail of the relaxation times distribution is
overpopulated when a solicitation is applied during aging,
as compared to the case without any solicitation. We point
out that this phenomenon of over-aging in the trap model is
robust for parameter changes. Notice that recent simula-
tions [13] on Anderson’s model for spin glasses show
qualitatively the same results for the correlation functions
with a positive temperature step. Finally, we emphasize the
fact that the change in the correlation function shape that
reflects the change in the relaxation time distribution cor-
responds to over-aging when the long time decay is slower
after a solicitation than before. Moreover, we expect that
our measurement will provide an accurate selectivity on
the models coupling mechanics and thermal aging, but a
more precise analysis with the existent models is beyond
the scope of this Letter.
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