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Mesoscopic Modeling of Slip Motion at Fluid-Solid Interfaces with Heterogeneous Catalysis
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The onset of slip motion at fluid-solid boundaries is investigated as a function of the reflectivity of the
solid wall by means of a mesoscopic lattice Boltzmann model. Substantial slip flow is observed for
reflectivity values below a critical threshold. It is shown that this slip flow may significantly affect the
conversion efficiency of catalytic microchannels.
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of finding a particle at lattice site x at time t, moving along
the lattice direction defined by the discrete speed ci and �t

cal realism than Maxwell’s model itself. This is in line with
the very spirit of the mesoscopic approach: assess the
A deeper understanding of the physics of molecular
interactions at fluid-solid interfaces is key to many emerg-
ing applications in material science, chemistry, microen-
gineering, and biology [1]. From a macroscopic point of
view, the physics of fluid-solid interactions is conveyed
into the specification of appropriate boundary conditions,
the common tenet in continuum fluid dynamics being that
fluid molecules in the immediate vicinity of a solid wall
should move at the same speed of the wall. However, it is
well recognized that a variety of fluids do exhibit a net
motion relative to the solid wall, a phenomenon known as
slip motion [2]. An important measure of slip motion is the
slip length, ls, defined as the extrapolated distance from the
wall where the fluid speed matches exactly the wall speed.
The slip length is generally proportional to the molecular
mean free path, but for the case of specularly reflecting
walls, the constant of proportionality may become so large
to generate significant deviations from hydrodynamics in
the vicinity of the wall. Since the operation of many micro-
devices depends crucially on fluid-wall interactions, it is
important to model the effects of a nonzero slip coefficient
on the transport properties of such devices. The computa-
tional tool of choice to this purpose is molecular dynamics
(MD) [3]. However, since MD cannot reach scales be-
yond a few tens of nanometers, the coupling between
MD and fluid models must necessarily proceed through a
huge gap in space and time scales. Mesoscopic models are
very appealing because they help by reducing this gap
considerably.

In this Letter, we present a simple lattice Boltzmann
(LB) mesoscopic model to investigate the effects of slip
motion on the efficiency of microreactive channels. This
mesoscopic model is shown to yield results consistent with
previous MD predictions.

The simplest lattice Boltzmann equation (LBE) looks as
follows [4,5]:

fi�x� �tci; t� �t� � fi�x; t�
� �!�t�fi�x; t� � fei �x; t��;

where fi�x; t� � f�x; v � ci; t�, i � 1; n, is the probability
0031-9007=02=89(6)=064502(4)$20.00 
is the time unit. The left-hand side of this equation repre-
sents the molecular free-streaming, whereas the right-
hand side represents molecular collisions via a simple
relaxation towards local equilibrium fei (a local Max-
wellian expanded to second order in the fluid speed) in a
time lapse of the order of !�1. This relaxation time fixes
the fluid kinematic viscosity as � � c2s�1=!� 1=2�, where
cs is the sound speed of the lattice fluid, 1=

���
3

p
in the

present work. In order to recover faithful fluid dynamics,
the set of discrete speeds must be chosen such that mass,
momentum, and energy conservation are fulfilled. Once
this is secured, the fluid density

P
i fi, and speed u �P

i fici=� evolve according to the Navier-Stokes equations
of fluid dynamics.

In the bulk flow, LBE is essentially an efficient Navier-
Stokes solver in disguise. At the solid interface, however,
the mesoscopic nature of LBE becomes manifest, because
boundary conditions must be imposed on the particle dis-
tributions rather than on fluid quantities. For instance, the
no-slip boundary condition, ~uu � 0, is typically imposed by
reflecting the outgoing populations back into the fluid
domain via the so-called bounceback rule. With reference
to particles propagating southeast ( & ) from a north-wall
boundary placed at z � H � 1=2, the bounceback rule
simply reads f&�x; y;H � 1� � f-�x� 1; y;H� where
the lattice spacing is made unity for convenience. This
corresponds to a stylized two-body hard-sphere repulsion,
with an interaction range equal to

���
2

p
lattice units. An

interesting generalization of the above rule consists in
making allowance for a mix of bounceback and specular
reflections:

f&�x; y;H � 1� � rf-�x� 1; y; H� � sf%�x� 1; y;H�

(1)

where r is the reflection coefficient and s � 1� r is the
slip coefficient (see Fig. 1). Note that this is basically a
lattice implementation of a physical model of boundary
events proposed by Maxwell back in 1879 [6]. Conse-
quently, Eq. (1) cannot aim at any deeper degree of physi-
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FIG. 2. Streamwise flow speed after 18 000 steps, as a function
of cross-flow coordinate z for different values of the reflection
coefficient: r � 1; 10�2; 10�3; 10�4; 10�5; 0 from left to right.
The last two curves are indistinguishable at this scale. Here � �
� � 0:01.
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FIG. 1. The schematic mechanism of the slip-boundary con-
ditions between fluid nodes (circles) and boundary nodes (box).

VOLUME 89, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 5 AUGUST 2002
degree of insensitivity of physical observables to the mo-
lecular details of the fluid-solid interactions.

As an illustration, we consider a three-dimensional fluid
flow in a box of millimetric size. The fluid flow conveys a
passive pollutant which, upon hitting the walls of the box,
undergoes a first order catalytic reaction of the form dCw

dt �
��Cf � Cw� � �Cw, where Cw and Cf are the pollutant
concentration at a solid cell and its fluid neighbor cells,
respectively. The coefficients � and � are empirical in-
verse time scales for fluid-to-wall mass transfer and cata-
lytic reaction, respectively. This equation is applied to all
buffer cells placed at z � 0 and z � H � 1 and serves as a
dynamic boundary condition for the pollutant concentra-
tion. Note that since flow boundaries are placed halfway
between lattice cells, i.e., at z � 1=2 and z � H � 1=2, the
fluid-to-wall mass transfer term ��Cf � Cw� is correctly
evaluated at the boundary of the buffer cells.

The Navier-Stokes equations for the bulk flow are solved
by the lattice Boltzmann equation, combined with a cus-
tomized Lax-Wendroff scheme [7] for the pollutant. The
main parameters of the simulation are L � 12 mm, H �
3 mm, and a flow at speed U � 10–50 m=s. On a 120

30
 30 grid, each lattice spacing corresponds to 0:1 mm
in size, yielding a lattice time step of about 0:3 �s. The
other parameters are (in lattice units) pollutant mass dif-
fusivity, D � 0:1, fluid kinematic viscosity, � � 0:01, and
�;� in the range 0:001–0:1. This yields the following time
scales: tD � H2=D � 9000; tA � L=U � 1200, and tW �
��1 � 10–1000, tC � ��1 � 10–1000, corresponding to
a fast-chemistry scenario in which catalytic processes oc-
cur at comparable or shorter scales than fluid advection.
Since catalytic processes take place only at the fluid-solid
boundary (heterogeneous catalysis), it is of interest to
explore the effects of slip motion on the overall efficiency
of the catalytic device.

Previous studies [8] suggested that any nonvanishing
amount of reflectivity, r, would ultimately bring the fluid
speed at the wall to zero, provided one is willing to wait
long enough, namely, of the order of tS � eks lattice time
units, with k some constant much larger than unity. This
suggestion was backed up by actual calculations in the
range 0:1< r< 0:5, which showed a steep increase of 2
orders of magnitude of the slip relaxation time within the
aforementioned range. Since r � 0:1 may still be a rela-
tively large value, in that s � 1� r varies by less than a
factor of 2 in the range �0:1; 0:5�, it is natural to wonder
whether in the true vicinity of r � 0, a sort of ‘‘glassy’’
behavior, namely, a nonanalytic blowup of the relaxation
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time, would occur. This question is all but academic for
nonequilibrium situations, like the reactive, fast micro-
flows explored here, in which all time scales of practical
relevance might be much shorter than the slip relaxation
time tS. It is argued that in the presence of a nonvanishing
slip flow (order parameter of the glassy transition) the
operational parameters (say, the conversion efficiency) of
the device would be significantly affected by slip motion. It
is therefore interesting to explore this scenario by a system-
atic scan in the close vicinity of r � 0, including the
limiting value r � 0.

Our results indicate that below a critical value
r < rc � 0:01 substantial slip motion sets permanently in.
By permanently, we mean on time scales significantly
longer than the longest fluid-chemical scale in action.

The profiles of the streamwise flow speed at the central
chord x � L=2, y � H=2 as a function of z for the se-
quence of values r � 10�n, n � 0; 2; 3; 4; 5, and r � 0 are
shown in Fig. 2. The case r � 1 corresponds to standard
parabolic profile (Poiseuille flow) predicted by continuum
fluid dynamics. We observe that substantial slip motion
sets in for approximately r < 0:01. The profile on top of the
slip layer remains parabolic up to r < 0:001. For smaller
values the shape of the near-wall profile shows a tendency
to invert its curvature. These effects can be quantitatively
appreciated by plotting the slip length: ls � us=u

0
w as a

function of the reflection coefficient r, where u0w is the
derivative of the flow profile at the wall (for a Poiseuille
flow u0w � 4u0=H).

This information is shown in Fig. 3, from which we note
an exponential inflation of the slip length from scales
comparable to the molecular mean free path (straight line
at the bottom) all the way up to macroscopic dimensions
comparable to the transversal size H of the fluid domain,
covering more than 3 orders of magnitude in the process.
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FIG. 5. Conversion efficiency as a function of the reflection
coefficient for � � � � 0:1; 0:01; 0:001 (A,B,C).
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FIG. 3. Slip speed and slip length as a function of the reflection
coefficient. Same parameters as Fig. 2.
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The extent of the largest slip length, about 20 lattice units
(i.e., 20 hard-sphere diameters in molecular language) is
interestingly close to results reported by molecular dynam-
ics studies [9]. To be more specific, in Fig. 4 we report the
slip length as a function of the pressure gradient rp, for
r � 10�n, n � 1; 2; 3; 5. From this figure we note that, in
accordance with MD simulations [9], the slip length grows
with decreasing pressure, this effect being particularly
spectacular for the case r � 10�5. Recent molecular dy-
namics simulations reported a divergent slip length as the
shear rate, S � U=H, approaches a critical value Sc [10].
Our data do not seem to reproduce such a divergence,
which is not surprising since the shear rate in our simu-
lations is about 3 orders of magnitude below Sc. To make
our shear rate comparable with Sc, LBE should operate on
nanometric and picometric space and time scales, respec-
tively, which is clearly beyond the scope and purpose of the
mesoscopic approach.
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FIG. 4. Slip length as a function of the pressure gradient for
r � 10�n; n � 1; 2; 3; 5. The rightmost points correspond to the
parameter set of Fig. 2.

064502-3
We now consider the effects of slip motion on the
conversion efficiency, defined as & � 1��out=�in,
where �in and �out are the fluxes of pollutant at the inlet
and outlet sections of the microreactor, respectively. The
effects of slip motion on the conversion efficiency are
shown in Fig. 5, from which we see that the efficiency is re-
ciprocal to the behavior of the slip length (speed). This can
be explained by the following analytical considerations.
The conversion efficiency of a smooth microreactive chan-
nel can be computed as follows [11]: & � 1� e�

L
2H

'�Da�
Pe

where Pe � UH
2D , is the Péclet number, measuring advection

versus diffusion time scales, and Da � H2

4D( is the diffusive
Damkoehler number measuring diffusion versus chemical
time scales (here ( � 1=�� 1=�). In the above ) is the
transversal wave number of the concentration profile,
which is obtained by imposing zero speed at the boundary,
thus yielding the following algebraic constraint: '2 �
2�
H Da2 cos�'� where the lattice spacing � has been reintro-
duced for the sake of dimensional clarity. The above
relation shows that ' is an increasing function of the
Damkoehler number. This meets the intuitive notion that
high Damkoehler numbers (fast chemistry) associate with
high efficiency. Similarly, high Péclet numbers (fast flows)
spell poor efficiency, simply because ‘‘fast’’ flows give the
pollutant ‘‘no time’’ to react. These qualitative consider-
ations are reflected by quantitative data in Fig. 5, which
shows a monotonic drop of efficiency with decreasing
values of � and �. From the above analysis, it is also clear
Inlet Outlet

FIG. 6. Detail of the geometry set up for the simulation with a
trapezoidal corrugation. A section at y � const is shown (out of
scale for space reasons).
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FIG. 7. Conversion efficiency as a function of the height h of
the trapezoidal corrugation, for the cases r � 1 and r � 0:001.
Here � � � � 0:01.
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that slip motion can only decrease the overall conversion
efficiency of the device. This is again reflected by the
results of Fig. 5, which witness a significant deterioration
of the conversion efficiency in the region where substantial
slip flow is present. This drop in efficiency, measured as
&�0�=&�1�, yields 0:655; 0:476; 0:372 for cases A, B, C,
respectively. Slip-flow results can be interpreted by simply
shifting u � u� us in the definition of the Péclet number.
The result is reported by the solid lines in Fig. 5, which
shows a reasonable agreement with numerical results.

The mesoscopic approach extends naturally to more
complex situations where analytical backup is no longer
reliable, such as flows with microcorrugations (micro-
pumps, valves), which are crucial to the optimal design
of microfluidic devices. As a preliminary example of such
applications, we have computed the effects on the effi-
ciency of a trapezoidal corrugation of height h and bases
b, b� 2h, placed in the middle of the bottom wall of the
microchannel (see Fig. 6). The trapezoidal corrugation is
centered at L=2 with a top base b � 10, while its height is
varied between h � 0 and h � 9. By deflecting fluid mo-
tion, the trapezoidal corrugation promotes a higher cross-
flow pollutant transport, which in turn is expected to yield a
better efficiency. This effect is reported in Fig. 7, which
shows the conversion efficiency as a function of the tra-
pezoidal height h for the cases r � 0 and r � 0:001. We
observe that a trapezoidal corrugation with h � 9 nearly
doubles the conversion efficiency as compared to the
smooth channel, almost entirely recovering the deficit
due to slip motion. Finally, we point out that results in
the high-slip regime are fairly sensitive to the accuracy of
064502-4
the boundary conditions implementation. For instance, it is
readily checked theoretically, and confirmed by numerical
simulation, that an apparently minor change to the three-
site boundary condition, Eq. (1), such as f&�x; y;H � 1� �
rf-�x; y;H� � sf%�x; y;H�, results in the complete sup-
pression of slip motion. This shows that boundary condi-
tions for high-slip flows must be handled with care,
especially in the presence of geometric irregularities.

In conclusion, we have introduced a mesoscopic lattice
Boltzmann model with boundary conditions allowing for
slip motion at solid walls. The numerical results show that
slip motion degrades the efficiency of microreactive chan-
nels, whereas geometrical irregularities have a beneficial
effect.
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