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The statistics of two-dimensional turbulence exhibit a riddle: the scaling exponents in the regime of
inverse energy cascade agree with the K41 theory of turbulence far from equilibrium, but the probability
distribution functions are close to Gaussian-like in equilibrium. The skewness S = S;(R)/ Sg/ 2(R) was
measured as Sy, = 0.03. This contradiction is lifted by understanding that two-dimensional turbulence is
not far from a situation with equipartition of enstrophy, which exists as true thermodynamic equilibrium
with K41 exponents in space dimension of d = %. We evaluate the skewness S(d) for% = d = 2, showing
that S(d) =0 at d = %, and that it remains as small as S, in two dimensions.
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Two-dimensional (2D) turbulence is not realized in
nature or the laboratory, but only in computer simulations
[1]. Nevertheless it serves as an idealized model for a
variety of natural flow phenomena, such as geophysical
flows in the atmosphere, oceans, and magnetosphere.
Experimental setups that are close to 2D turbulence were
realized in a number of laboratories [2], and the advent of
faster computers allows precise simulations of the 2D
Navier-Stokes equations [3]. In this Letter we are inter-
ested in the statistical characteristics of 2D turbulence, in
the probability distribution functions, and in spectra of
velocity differences. The velocity difference across a
scale R is written in terms of the velocity field u(r, 1),
w(r, R t) = u(r + R, t) — u(r, t). Usually one measures
the longitudinal component, wy(r, R, 1) = [u(r + R, t) —
u(r,1)] - R/R, the probability distribution function (pdf)
of this object, denoted as P[w,(r, R)], as well as moments
of this pdf, such as the second and third order structure
functions

SZ(R) = <W%(r: R) t)>) S3(R) = <W2(r: R, t)> (1)

Here the average is over space and time. In stationary
homogeneous and isotropic ensembles the structure func-
tion depends on R only.

It is well known that in 2D turbulence the properties of
these objects depend on whether R is larger or smaller than
the scale L at which energy is injected into the system. For
R > L (but smaller than the outer boundaries of the
system) one observes an inverse cascade of energy, and
S,(R) is found to scale with an exponent in agreement with
the Kolmogorov 1941 theory, i.e.,

S,(R) = C,(eR)?3, R> L. (2)

Here C, is a dimensionless coefficient of the order of unity,
and ¢ is the mean energy flux per unit time and mass. For
R < L (but larger than the dissipative scale) one observes
a direct cascade of enstrophy, with an exponent close to 2,
but with some logarithmic corrections. Recent experiments
and simulations lend strong support to Eq. (2); on the face
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of it this indicates that the system is very far from equili-
brium, where equipartition of energy is expected. On the
other hand, the same experiments and simulations indicate
that P[w,(r, R)] appears almost Gaussian, as if the system
were very close to equilibrium. Quantitatively one meas-
ures the skewness

S = 85(R)/SY*(R), 3)

with the result S, = 0.03 < 1. This seeming contradic-
tion and its resolution are the subjects of this Letter.

The basic idea of this Letter is that there exists one space
dimension for which these observations are not at all in
contradiction. This is d = ‘%, in which there exists an
equilibrium state with equipartition of enstrophy, where
the scaling expected for S,(R) is exactly (2), where all the
odd moments and the cumulants of the even moments
vanish, in particular, the skewness S = 0. By examining
turbulence in % + € dimensions, we establish that through-
outtherange 0 = € = % the situation remains very close to
the one seen at € = 0; the value of S(d) provides a natural
small parameter to characterize the distance from d = %.
This parameter remains very small up to two dimensions.
Similarly, all the cumulants of the even moments and all
the higher odd moments remain small. We thus interpret
the statistics in the inverse cascade regime of 2D turbu-
lence as a state very close to equilibrium.

It should be said at this point that attempts to connect
turbulence to equilibrium statistical mechanics were made
before. Well known are the theories advanced by Onsager
[4], Hopf [5], and Lee [6], and see Ref. [1] for a review.
Their ideas from equilibrium statistical mechanics were
proposed to explain turbulence; as summarized in [1], the
consensus is that such ideas were not relevant for forced
turbulence but may be relevant for the final stages of the
temporal evolution of decaying turbulence.

Next there were attempts to connect the physics in two
dimensions to special properties of other, nonphysical
dimensions. Of particular influence were ideas advanced
by Fournier and Frisch [7], who identified d = 2.05 as the
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dimension at which the direction of the energy flux
changes sign. It was hoped that this may provide a con-
venient starting point for perturbative expansions in the
magnitude of the flux. A similar point was identified in
shell models of turbulence, as a function of a parameter [8].
It turned out, however, that the fluctuations were not small
at that point, the flux changed sign discontinuously, and
perturbative theories did not yield useful insights. In our
own work on shell models [9] we identified another point
in parameter space where a quasiequilibrium state with
equipartition of “enstrophy” coincided with an energy
spectrum in agreement with Kolmogorov scaling expo-
nents as in (2). This has led us to seek a one-parameter
lifting of the Navier-Stokes equations where a similar
phenomenon exists. We were thus led to examine turbu-
lence in d = 5 and its vicinity. We argue below that there is
a fundamental difference between the properties of turbu-
lence in d =% (where the flux vanishes) and d = 2.05
(where the flux discontinuously changes sign). At the
former point the statistics is exactly Gaussian, with equi-
partition of the enstrophy. The latter has no such distinc-
tion, and the statistics may differ strongly from Gaussian.

We begin by generalizing 2D turbulence to d <2 di-
mensions. In doing so we preserve the d-dimensional
energy and enstrophy, in distinction with other such ex-
tensions that fail to do so. The Navier-Stokes equations for
the incompressible velocity field u(r, t) read

ou/ot+ (u-Vu — vV2u + Vp = f, “4)

where v is the kinematic viscosity, p is the pressure, and f
is a force which maintains the flow. In d = 2 it is natural to
consider the vorticity field e(r, t) = V X u(r, r). For v =
f =0 the curl of Eq. (4) is dw/dt = V X (u X w). We
introduce the right-handed coordinate system (x; = x,
X, =y, and x3 = z) in which for 2D flows u3; = 0 and
u(r, t) = u(x, r), where x = {x;, x,}. The vorticity has the
single component w3 for which Eq. (4) reduces to

dw/ot+ (u-V)w = 0. 5)

This equation has two quadratic integrals of motion, the
(kinetic) energy E and the enstrophy H:

1 1
E=2 f u?(x, d*x, H=3 f w*(x, )d*x.  (6)

The velocity and vorticity of a 2D flow may be derived
from the stream function (x, 1): u(x, 1) = —V X Z¢(x, 1),
w(xx, 1) = —V2i(x, 1), where 2 is a unit vector orthogonal
to the x plane, and V? is the Laplacian operator in the
plane. In k representation, a(k,1) =k [drexp[—i(r -
k)l¢(r,t). The Fourier transforms of u(x,7) and of
w(x, 1), respectively, u(k, 1) and w(k, t), are expressed in
terms  a(k,t): u(k,t) =i(Z X k)ak,1), ok 1) =
—kal(k, t), where k = k/k. Now, by Eq. (5)
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dak,t) 1 (d*qd*p
=— 6k +q+ p)V,,,a"(q, t)a*(p, 1),
at 2 (277)2 ( q p) kqpa (q )a (p )

Vigp = Sap(P* = 4%)/2kqp, Sgp = 2qpsing ,,,
Stap = Spkq = Sqpk = ~Skpq = ~Sqkp = ~Spaio

1Sipal = V2242 + g2p* + PR — K — g* — p*

)

Here the interaction amplitude (or “vertex”) Vi, is ex-
pressed via Sy, ,; [Sy,,|/4 is the area of the triangle formed

by the vectors k, g, and p. ¢, = b, — by; ¢y, by, and
¢, are the angles in the triangle plane between the x, axis
and the vectors k, ¢, and p, respectively.

The vertex V,,, satisfies two Jacoby identities [1]

(qup + Vpkq + quk) =0, (8)
(kzvkqp + pzvpkq + qzvqpk) =0. (9)
The first one guarantees the conservation of energy in the

inviscid forceless limit, while the second conserves the
enstrophy. In terms of a(k, t) Eqgs. (6) read

szla(k, H|2d%k
H= | ———.
2(27r)?

_ (latk, I’ a*k

E )
2(27r)?

(10)
To generalize to d dimensions we keep the vertices

unchanged but integrate over d?qd®p in Eq. (7). The 2nd
and 3rd order correlation functions of a, a* are

2m)*8(k + @)n, (1) = (alk, )alg, 1), an
2m)!8(k + q + p)Fiqp(1) = (alk, Dalg, Da(p, 1).  (12)

In isotropic systems, we do not need to carry the boldface k
index in n; and in Fy,,. In terms of n; we define the
volume densities in d dimensions:

E dk H dk
e=1= = -

- 2
v ) 2emi™ v ) 22x7

k ny.

Since n; and k’n; serve as the energy and enstrophy
densities, respectively, in k space, the thermodynamic
equilibrium can be achieved with equipartition in any of
these quantities:

e0 —

ny’ = A,

h0 — 2
nl = A,/k,

energy equipartition;
o (13)
enstrophy equipartition.

In such a state of thermodynamic equilibrium unavoidably
all fluxes vanish and the pdf of the velocity differences is
Gaussian. Usually in the theory of turbulence one rather
considers flux equilibria, which in the present situation can
be with energy flux or enstrophy flux. Dimensional analy-
sis for such flux equilibria predicts

ng = Co(d)e*3k >,

2
x,=d+ 3 energy flux; (14)

nt = C,(d)h*3k ™, x,=d+2, enstrophy flux. (15)
Here £ is the mean enstrophy flux per unit time and mass,
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whereas C,(d) and C,(d) are d-dependent dimensionless
coefficients. In terms of S,(R) these results are in agree-
ment with (2) for all d for energy flux equilibrium. For
enstrophy flux equilibrium the result is S,(R) « R?. The
basis for further development is the immediate observation
that for d = ;—‘ the scaling exponent for energy flux equili-
brium, x, = 2, coincides with the exponent 2 of the equi-
partition of enstrophy. Accordingly for d = %the law (2) is
in agreement with enstrophy equipartition and therefore
also with a Gaussian pdf for the velocity differences. In the

PE '
$2(R) = fWIexp(sz cosey) — 112 sinpynt = C,(eR)*A,,

A = ]277 sin q’)kdd)

0

In d dimensions we write S,(R) = C,(d)(eR)*? =
C.(d)(eR)*3A,(d). Analyzing the d-dimensional general-
ization of (17) one proves that A,(d) is not critical at d = 3

On the other hand, we will show that C,(d) [and therefore

5/%

rest of this Letter we show that in dlmensmns 2<d=2,
the flux remains small (for given total energy of the
system) and the pdf’s do not change much from
Gaussianity. For the sake of brevity we consider the skew-
ness as a measure of the deviation from Gaussianity;
similar results can be derived for any odd moments or
any cumulant of even moment.

The skewness (3) is now d dependent, S(d). To compute
it we need to separately find S,(R) and S5(R). We start with
the former. The structure function S,(R) can be computed
from Eq. (14). In two dimensions

(16)
[1 — cos(k cosg)] = 0.0855. 17
| A,(d) by its value A, at two dimensions, C(d) = C,(d)A,.

This introduces at most an error of the order of unity. On
the one hand, S3(R) = 12eR/d(d + 2) exactly. To com-
pute C,(d) we will use this result and the relation of S3(R)

S>(R)] diverges when d — 3. Therefore we will estimate | to Figp:

dkd?qd?
S3(R) = f¢ 8(k + q + p)sing; sing, sing ),

(27T)2d

X Im{[exp(ikR cos¢;) — 1][exp(igR cos¢,) — 1][exp(ipRcos¢,,) —

This is as far as we can proceed exactly. Now we will
express the third order correlator Fy,, in terms of the
second order n;. It is well known that this cannot be
done without closure approximations. The latter are
known to provide semiquantitative estimates of the coef-
ficients of correlation functions, and in the present context
we expect such approximations to perform better than in
3D due to the existence of the small parameter S(d) that we
will expose in this calculation. The starting point is the
equation of motion of n,(¢), which can be exactly written in
terms of the third order correlation Fy,,:

ang /29t = I,
= (277)_dfddqddp8(k +q+ P)WVigpFrgp-
(19)

A standard closure approximation expresses Fy,, via ny.
Proper closures in turbulence involve the following steps:
first, one considers the sweeping-free renormalized pertur-
bation theory to first order. Second, one assumes a simple
analytic form for the time decay of correlation and re-
sponse functions. A typical result reads [10,11]

= NigpOrqp:

(20)
qupl’l I’l +V kannq + quknpnk.

Here 6,,, is a closure dependent “triad-decorrelation
time’’; assuming simple exponential decay for the second
order correlation function and response function, one finds
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1]}qup' (18)

=1/(ve + ¥4+ 7p) 1)

In Eq. (21) 7y, is the width of the assumed Lorentzian line
shape. The latter can be estimated as follows: 7y, =

A, (d)k\JS,(1/k) = C (d)sl/3k2/3 Here A, (d) is a coefﬁ—
Clent of the order of unlty Since S,(R) dlverges atd =3 we
will evaluate below A, (d) via its two-dimensional value

A .
= ANCy(d).

01“117

v-

c,(d) (22)

We stress that although Eq. (20) is derived using usual
uncontrolled closure approximations, once it is substituted
into Eq. (19) the latter conserves the energy and enstrophy
invariants £ and J{ defined in all d dimensions. This
distinguishes our analysis from some previous theories
like [7] which conserved enstrophy in two dimensions
only. Note that our equations of motion exhibit the equi-
libria (13)—(15) as exact results. Thermodynamic equilibria
follow directly from the Jacoby identities (8) and (9) which
yield Ny, = Fiyp = 0 and hence also [; = 0. To show
that also the flux equilibria are satisfied exactly one needs
to use the Kraichnan-Zakharov transformation [12] and the
Jacoby identities. There Fy,, does not Vamsh in general.

We now note that in dimension d = 3 4 when ny, = 1/k2,
F4p vanishes by itself. This follows from the fact that Ny,
vanishes due to the Jacoby identity (9). It is worthwhile to
stress that in our context this result is derived only to first
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order in renormalized perturbation theory. It is, however, a stronger result which can be established order by order to all

orders.

Substituting (20) with n; = nf of Eq. (14), and Eq. (21), we can rewrite S3(R) in the form
S3(R) = [C,(d)PA3(d)(eR)/C,(d), (23)

dkdiGalp 8k + § + p)Si;; sin, singh, singd
A3(d) =

(277.)2d 122/3 +qZ/3 +p2/3 (]Eqﬁ

)2d+5/3

X [sin(k cosep;) + sin(g cosgp,) + sin(p cosep ) 2[k4+23(p? — %) + pat2/3(g* — k) + g**2 3 (k2 — p?)].

Combining Egs. (3), (16), (22), and (23) we find S(d) =
A;(d)/A3A,. Obviously, A3(d) = 0 at d = . This implies
that S,(R) [i.e., C.(d)] diverge at this point. It is easy to
prove that the first derivative of As(d) with respect to d at
d = 3 is finite. We can therefore approximate A;(d) as

As(d) = a(d — 4/3), (25
up to orders of (d —%? On the other hand, by direct
numerical integration we found

As = As(d)] ,=p = 3.556 X 1074, (26)
Thus in two dimensions we estimate

S = S(d)] 4=y = 0.0486/A,. Q7

The experimental observation is Sexp =~ (.03. Taking lib-
erty to use this finding we estimate A, = 1.62. This is in
agreement with our expectation that A, is of O(1). Now we
can estimate S(d) in the whole range % = d = 2 by using
the linear approximation (25) and find

0.0729( 4 4
S(d) = <d - —) ~ 0.045<d - —). (28)
A, 3 3

The main conclusion of this Letter is that although d = 2 is
finitely removed from d = %‘, the relevant small parameter
remains small all the way to d = 2, because of the numeri-
cal smallness of the ratio A;/A3 =~ 0.0486. This smallness
stems from generic geometric cancellations in the last line
of the integrand in (24). This originates from the structure
of the vertex Vi, and is therefore fundamental to Euler
equations in two dimensions. We stress at this point that
other measures for the deviations from Gaussianity display
similar smallness, as will be shown in a forthcoming
publication.

In summary, we have addressed the experimental find-
ings of the statistics of 2D turbulence. It is hardly surpris-
ing that 2D turbulence is not strongly intermittent; in the
inverse cascade regime there are no mechanisms to create
rare events that are intimately related to the sharpening and
enhancement of fluctuations as they are transferred down
the scales in generic 3D direct cascades [13]. On the other
hand, the fact that the statistics of 2D turbulence are so
close to Gaussian came as a major surprise. In this Letter
we offered an explanation to this finding. We have identi-
fiedd = % as a convenient point around which to develop a
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(24)

theory of 2D turbulence. The statistics there are Gaussian,
but the spectrum in the inverse energy flux regime is K41.
The skewness is zero, allowing a sensible closure theory
for d slightly larger than %. Estimating the skewness as a
function of d, we are led to conclude that it remains small
also in two dimensions. We can thus interpret 2D turbu-
lence as a state close to equilibrium. In future work we
will examine further the structure of the theory in the range
% =d =72 to assess further the quality of the closure
approximation.
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