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Origin of a Repose Angle: Kinetics of Rearrangement for Granular Materials
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A microstructural theory of dense granular materials is presented, based on two main ideas: first, that
macroscopic shear results from activated local rearrangements at a mesoscopic scale; second, that the
update frequency of microscopic processes is determined by granular temperature. In a shear cell, the
resulting constitutive equations account for Bagnold’s scaling and for the existence of a Coulomb
criterion. In a granular flow down an inclined plane, they account for the rheology observed in
experiments [Phys. Fluids 11, 542 (1999)] and for temperature and velocity profiles measured numerically
[Europhys. Lett. 56, 214 (2001)] [Phys. Rev. E 64, 051302 (2001)].
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an isolated model of granular flows, the current work
attempts to bridge the gap between two of such systems,

where _�� is the off-diagonal component of the rate-of-
deformation tensor, and where A0 is some constant. The
An upsurge of interest for granular materials has re-
cently stirred the physical literature [1]. The problem is
indeed challenging. The situation is paradoxical. Those
materials lie at our doorstep, are ubiquitous in everyday
life, their understanding is of an extreme interest for
numerous practical reasons, ranging from earthquakes or
landslides to industrial processes. Yet, there is no satisfac-
tory explanation for the obvious fact that heaps have a
slope. Recent advances have been made in experimental
and numerical studies. In particular, the flow of a granular
layer down an inclined plane is a laboratory model for
many realistic situations [2–5]. In this setup, evidence has
been given for the existence of a critical curve Hstop���,
relating the slope � to the thickness of the granular layer
below which the system jams. This relation refines the
well-known Coulomb criterion of yield. In the bulk of a
dense flow, it is accompanied by Bagnold’s scaling, � /
_��2, which relates the shear stress� to the strain rate _�� [3,6].
Those experimental findings remain unexplained and add
even more constraints to the challenge faced by the theo-
rist. Kinetic theory [7] accounts for the rheology of dilute
systems [8], but fails to explain jamming and the rheology
of dense systems. Recent theoretical approaches postulate
the existence of a repose angle, without explaining how it
originates from microscopic motion [9].

This work focuses on structural rearrangements. It draws
on the so-called shear transformation zone (STZ) theory
[10], recently introduced to account for the behavior of
viscoplastic solids. The profound difference between plas-
tic and granular materials at the microscopic level is of
particular interest: it has been shown recently that striking
similarities accompany jamming transitions in various sys-
tems, be they granular materials, glasses, or foams [11];
this observation, however, has not led to the identification
of a universal mechanism underlying such similarities, and
to a statistical approach for structural systems. More than
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thus showing that structural rearrangement is a key to
our understanding of dense materials, on very general
grounds.

In order to fix ideas, I start with a very brief introduction
to rearrangement kinetics in the spirit of [10]. Then, I show
how Bagnold’s scaling emerges from the microscopic
dynamics of the N-body problem for hard spheres. This
is necessary to proceed and write macroscopic equations
for dense granular materials.

A shear transformation zone (STZ) is defined as a locus
within the material where a rearrangement is made pos-
sible by the local configuration of the contact network [10].
An important remark that lies at the root of STZ theory
is that, once some microscopic shear has occurred some-
where in the material, the system cannot shear further at
this point and in this direction (although it may shear
backward). This leads to the identification of pairs of types
of arrangements which are transformed into one another
by a local shear. A local ‘‘symmetry’’ is thus induced by
shearing; the local state of the system is determined by the
populations of arrangements susceptible to shear in a given
direction. To simplify the picture, a single pair of orienta-
tions is considered, aligned along the principal axes of the
stress tensor, an elementary transformation is sketched as

although an actual STZ might involve more than four
grains (say of order 10). Populations of STZ’s are denoted
n+ and n�; the rates at which a � ! � transformation
occurs are denoted R�. Macroscopic shear motion results
from the balance between local activated rearrangements,

_�� � A0�R	n	 � R�n��; (1)
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rates R� and equations of motion for the populations n�
must be specified to close the system.

In order to go further, I need to explain how Bagnold’s
scaling emerges from the microscopic dynamics of granu-
lar materials. It has been observed recently that Bagnold’s
scaling results from the N-body problem, so long as no
time scale is imposed to the system by coupling it, e.g., to a
pressure bath [8]. The argument given was based on
dimensional considerations, and was expected to hold
under the assumption that microscopic dynamics involve
only binary collisions. In fact, Bagnold’s scaling results
from an exact invariance of the N-body problem, for hard-
sphere systems, in the absence of a thermal or pressure
bath. This invariance sets strong constraints on how a
theory of dense granular materials can be written.

Consider a system of N grains in contact, submitted to a
set of forces Fc at each contact point, and to forces Fc0 at
contact points with the boundary. A solution of the system
is given by the locations ~rri�t� of the centers of mass of all
grains, their rotations, the sets c�t� and c0�t� of contact
points, and the forces as function of time. The interaction
between the grains is supposed to be a pure hard-core
repulsion, with dissipative collisions; friction may exist
provided that the yield criterion at each contact point
involves a ratio of forces. Equations of motion introduce
no time scale, no scale for the forces network: the system is
unchanged if all forces are rescaled as Fc;c0 ! Fc;c0=F0 and
time as t! t

������
F0

p
: the grains follow the same trajectories,

the successive sets c; c0 are identical. This invariance holds
in a very strong sense: a rescaling of the forces leaves the
trajectory of the system unchanged in the phase space; only
the time coordinate along the trajectory is modified. In a
shear cell, it leads immediately to the observation made by
Bagnold.

It is noteworthy that kinetic theory correctly incorpo-
rates this scaling invariance (although it does not account
for dense rheology where Bagnold’s scaling is observed).
This is performed via the introduction of granular tempera-
ture T, which, as opposed to thermodynamic temperature,
is a dynamical quantity. In this work, granular temperature
is associated with tiny motion of the grains in the surround-
ing cage made of their neighbors: it determines the small-
est time scale in the material; by definition,

����
T

p
is the

velocity at which the system evolves along a phase-space
trajectory. I can now resume the presentation of STZ theory
for granular materials. In the first part of what follows, I
study a shear cell and mean-field equations. Then, I con-
sider a granular flow down a plane and show how spatial
interactions lead to the emergence of Hstop���.

The invariance presented above has dramatic conse-
quences on how transformation rates can be written for
dense granular materials: it is possible to separate the
velocity

����
T

p
at which the system evolves along phase-

space trajectories, and the events which occur along these
trajectories (collisions or sudden collective rearrange-
ments). The probability that a rearrangement occurs per
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time unit (in physical space) is the product of the distance
(in phase space) spanned by the system per time unit—����
T

p
—, times the probability that a rearrangement occurs,

per unit length, along this trajectory. This latter, intrinsic,
probability of rearrangement can depend only on the ratio
of stresses �=P, where � is the shear stress and P is the
pressure. The transition rates are thus written R� /����
T

p
f���=P�;

����
T

p
appears as the update frequency of

activated processes. Rearrangement is expected to be en-
hanced by a strong distortion of the force network: the
function f��=P� is a positive, increasing functional of
�=P. An elementary shear is expected to be triggered by
a large excess force applied to the transformation zone;
recalling that large forces are distributed exponentially in
granular packings [12,13], an exponential dependency is
expected, and the rates are written [14]

R� � R0

����
T

p
e���=P:

R0 is some constant, and � is as an effective friction
coefficient that controls the occurrence of elementary re-
arrangements, and that may depend on the coefficient of
static friction between the grains.

Granular temperature is a dynamical quantity which, by
definition, is also a scale of specific kinetic energy. Its
dynamics results from the balance between the energy
produced by the flow and the energy dissipated

_TT � � _�� � �T
����
T

p
: (2)

The second term in the right-hand side (rhs) accounts for
collision-mediated energy dissipation (here collisions
might be complicated events involving clusters of grains):
events occur at the frequency

����
T

p
and the energy dissipated

per event is proportional to T itself; parameter � is related
to the restitution coefficient of the grains, and should be
sensitive to the volume of the material [15]. Another term
in this equation should account for energy dissipated in
kinetic friction ( / � _��P tan’); this loss, however, is ex-
pected to be lowered by velocity fluctuations [5] and is
neglected in the current work.

Equations of motion for the populations n� are required
to close the system. They are written [10]

_nn� � R�n� � R�n� 	!�Ac �Aan��: (3)

The first two terms on the rhs account for the ‘‘internal’’
dynamics of STZ’s, while the last term introduces a cou-
pling of the local arrangements with the mean flow. From a
macroscopic standpoint, the flow constantly stirs the
grains, thus creating and destroying local configurations.
In STZ theory, the rate ! at which the flow induces new
configurations is evaluated as the overall work � _��, nor-
malized by some typical force. In phase space, an
elementary shear, ��, corresponds to some segment
along a trajectory. This segment can be followed at differ-
ent velocities _�� depending on the scale of forces. The
renewal of geometric configurations along this segment is
064303-2
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proportional to ��, and can depend only on �=P, but
neither on the scale of forces, nor on the velocity _��. The
assumption ! / � _�� thus yields ! � � _��=P.

Let me now write Eqs. (1) and (3) in a more suitable
way. Variables

� �
n� � n	
n1

; � �
n	 	 n�
n1

; and � �
�
P

are introduced, and the rescaled parameters n1 �
2Ac=Aa, �0 � A0Ac=Aa, � � A0Ac, and E0 �
2�0R0. From (1) and (3), it comes

_�� � E0

����
T

p
�sinh���� � �cosh�����; (4)

_�� �
1

�0
� _�� � �!��; (5)

_�� � �
! _��
�0

�1���; (6)

T is governed by (2), and ! � _��� (for future use, I do not
simplify). Variables � and � represent the total normalized
density of STZ’s and the bias between populations n�,
respectively. These state variables account for a history-
dependent texture (or fabric [13]) of the material, and are
one of the most interesting aspects of the current model.
Since steady state motions are considered in this work, � is
taken to its asymptotic value, � � 1.

The system (2), (4), and (5) admits multiple jammed
solutions, _�� � T � 0; they are stable if tanh����< �,
where � depends on the preparation of the system. In the
flowing regime, � � 1=����; the flow is stable so long as
tanh���� > �: this is equivalent to � > tan�, with

tanh�� tan�� �
1

� tan�
:

It is a Coulomb criterion of yield with limit angle �. In the
flowing regime, the stationary value of T is

T �
E0

�
K����; (7)

with K��� � sinh���� � cosh����=����. Bagnold’s scal-
ing is recovered from (4)

_��2 � E0K����
3 �
�
: (8)

The factor K��� depends on the ratio of forces. This is
consistent with the observation by Bagnold that this scaling
holds in a region of experimental parameters where the
ratio � � �=P is constant [6].

Let me now consider a granular flow of thickness H
down an inclined plane. Axis x is taken along the descent,
and axis y perpendicular to the plane. Uniform solutions in
direction x are looked for; variables _��, �, and T depend on
y only. The velocity field is oriented along axis x and the
velocity profile u� y� is related to the strain rate by u0�y� �
064303-3
2 _���y�. The plane makes an angle � above the hori-
zontal; the stress tensor obeys Cauchy equations, leading
to P� y� � $g�H � y� cos� and �� y� � $g�H � y� sin�,
where $ is the mass density of the material, and g the
gravity.

I first neglect spatial effects, e.g., diffusive terms that
arise in the equation for T: this corresponds to the limit
H � 1. The local equations are identical to those pre-
sented earlier, but � and P vary in depth. In the flowing
regime, � � 1=�� tan�� is uniform; the stability criterion
is the same for all layers within the flow: the systems jams
if � <�, and flows otherwise. When it flows, T and _�� are
given by Eqs. (7) and (8), respectively, with � a linear
function of y. Temperature T grows linearly with the depth,
and Eq. (8) leads to

u�y� �
4

3
E0K�tan���

3=2

���������������
$g sin�

p

����
�

p H3=2 � �H � y�3=2�:

The linear increase of T with depth, this velocity profile,
and the rheology u�H� / H3=2 agree remarkably well with
experimental and numerical findings [2,3].

I finally complete this approach with the introduction of
spatial interactions, in order to study flows with a finite
thickness. Equation of motion for T should present a
diffusive term. This term, however, neither changes the
stationary values of � in a flow, � � 1=�� tan��, nor the
yield criterion tanh���� > �: it softens temperature and
velocity profiles, but does not account for the emergence of
the curve Hstop���. For pedagogical purposes, I neglect
thermal diffusion, and show that spatial interaction via
the renewal of STZ’s is sufficient to account for Hstop���.

STZ’s are mesoscopic structures that result from ar-
rangement of several grains. Unlike temperature, they do
not diffuse, because the motion of individual grains cannot
transport configurations: the motion of individual grains
renews configurations. STZ evolve either by internal rear-
rangements or by aggregation/elimination of grains carried
by the neighboring flow. A spatial coupling comes up quite
naturally from this picture, since the flow at a given point
contributes to the evolution of nearby configurations. The
rate ! is now written

!�~rr� �
1

2‘

Z
!0�~rr 	 ~RR�k� ~RR�d ~RR; (9)

with !0 � _���=P. The integral kernel k�R� is the proba-
bility that a change at ~rr 	 ~RR affects arrangements at ~rr.
Consider, for example, a grain carried at point ~rr 	 ~RR. In
order to interact with the local configuration at ~rr, this first
grain must come into contact with a second grain, at
distance R�D from ~rr (with D the diameter of a grain).
This second grain must also come into contact with a third
grain at distance R� 2D, etc., thus forming a chain
between ~rr and ~rr 	 ~RR. If p denotes the probability that
the first grain interacts with the second, k�R� verifies,
064303-3



FIG. 1. (left) The state variable � as a function of y=H, for
values of the parameters � � 10:23, � � 0:98, ‘ � 0:99, angle
� � 24�, and several values of H: H � 5 straight line, H � 10
dashed, H � 20 dot-dashed, H � 40 dotted. (right) Hstop from
experimental data by Pouliquen [2] (circles) compared to the
phase diagram obtained from the current theory (straight line),
with � � 10:23, � � 0:98, ‘ � 0:99. These curves do not
depend on parameters E0 and �.
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k�R� � pk�R�D�, whence an exponential form, k�R� �
exp��R=‘�.

Let me now study a flow governed by constitutive
Eqs. (2), (4), and (5), and where ! is given by (9). The
value of � in a steady state is now � � _��=�!, and varies
in space. Typical profiles are displayed in Fig. 1 (left). The
major consequences of spatial interaction appear at the
boundaries. At the top of the flow, � vanishes because _�� !
0, while! remains nonzero. At the bottom of the flow, only
the upper half plane y > 0 contributes to the integral
expression of !: this results in an increase of �. The
system is more isotropic, liquidlike, at the top; it is more
textured, solidlike, at the bottom.

The nonuniformity of � has dramatic consequences on
the stability of the flow. The jamming criterion tanh���� >
� is controlled by the maximum value reached by � at y �
0. Moreover, as seen in Fig. 1 (left), � globally increases
with decreasing H. If the lowest layers jam, the jamming
criterion is again verified for the upper layers: jamming
propagates upward, leading to the complete arrest of the
flow. This process determines a critical height Hstop���,
displayed in Fig. 1 (right) and compared with experimental
data. The fit is remarkable.

Of course, the introduction of thermal diffusion and
dilatancy should slightly blur this picture; it is also ex-
pected to account for the deviation from Bagnold’s scaling
observed in [2], close to the boundaries. The jamming
mechanism, however, seems essentially captured at this
level of approximation. The detailed analysis of complete
equations including those various effects will be addressed
in future works.

The results presented in this Letter are twofold. First,
the role of activated rearrangements in granular matter
064303-4
has been evidenced, hence providing a microstructural
interpretation for the Coulomb criterion. Second, the im-
portance of granular temperature, as opposed to thermody-
namic temperature, has been shown; the fact that
microscopic collisions determine the update frequency of
activated rearrangements lies at the root of Bagnold’s
scaling. Those features contribute to the existence of a
jamming criterion Hstop��� and to temperature and velocity
profiles consistent with recent observations.
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