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Experimental Test of a Trace Formula for a Chaotic Three-Dimensional Microwave Cavity
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We have measured resonance spectra in a superconducting microwave cavity with the shape of a three-
dimensional generalized Bunimovich stadium billiard and analyzed their spectral fluctuation properties.
The experimental length spectrum exhibits contributions from periodic orbits of nongeneric modes and
from unstable periodic orbits of the underlying classical system. It is well reproduced by our theoretical
calculations based on the trace formula derived by Balian and Duplantier for chaotic electromagnetic

cavities.
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In the last few decades, billiard systems have provided a
most appropriate model for the understanding and dis-
cussion of classical chaotic Hamiltonian systems [1] and
their quantum counterparts [2]. In two dimensions the
Schrodinger equation for quantum billiards coincides
with the Helmholtz equation for microwave cavities of
corresponding shape. This correspondence is the basis for
experimental studies of quantum manifestations of classi-
cal chaos. Early experiments focused on spectral fluctu-
ation properties in chaotic billiards [3,4]. About 30 years
ago Gutzwiller established a direct relationship between
the oscillating part of the density of states and the proper-
ties of the classical periodic orbits by means of a trace
formula [5]. Gutzwiller’s trace formula and its extension to
systems with mixed classical dynamics [6] were verified
experimentally using flat microwave cavities [4,7]. Three-
dimensional chaotic billiard systems have been scarcely
studied theoretically [8,9]. There is no analogy between
quantum billiards and electromagnetic cavities in three
dimensions. Still, the latter are of great interest for the
study of wave dynamical phenomena in chaotic systems.
Spectral properties of the vectorial Helmholtz equation
have recently been studied theoretically for integrable
systems [10] and experimentally for mixed and chaotic
systems [11-13].

We present the first experimental test of the trace for-
mula derived by Balian and Duplantier [14] for chaotic
electromagnetic resonators. The main difficulty to over-
come consists in the construction of a microwave resonator
that is completely chaotic while permitting only a few
nongeneric modes. We meet these requirements by using
a superconducting resonator with the shape of a desymme-
trized three-dimensional stadium billiard [15]. Figure 1
shows that this billiard consists of two quarter cylinders
with radii r; and r,, respectively. The electromagnetic
resonator has dimensions r; = 200.0 mm and r, =
141.4 mm and is made of niobium which becomes super-
conducting at temperatures below 9.2 K. This tremen-
dously increases the resolution of the measured spectra
due to a quality factor of up to 107 compared to 10° in
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normal conducting resonators. The measurements were
performed at a temperature of 4.2 K for frequencies f up
to 20 GHz. We show a typical spectrum in Fig. 2. The
evaluation of four reflection and six transmission spectra
yielded 18764 resonances. According to Weyl’s formula
[14,16] for electromagnetic cavities the smooth part of the
integrated resonance density, Nypoom(f), i8 @ polynomial of
third order in the frequency, where, in contrast to the
corresponding quantum case, the quadratic term is absent.
Its coefficients have been obtained by a fit to N(f). The
fluctuating part Np,.(f) is shown in Fig. 3; it still displays
smooth oscillations, which are due to the nongeneric peri-
odic orbits. Our cavity (see Fig. 1) exhibits two types of
nongeneric orbits. First, there are two families of three-
dimensional, marginally stable “bouncing ball” orbits
with length 2r; and 2r, that evolve parallel to the axis of
the two cylinders. Second, there are trajectories inside the
plane z = O that are linearly stable with respect to devi-
ations parallel to this plane and unstable with respect to
perpendicular deviations. While both types of orbits are of
measure zero, they generate smooth oscillations in the

FIG. 1. Desymmetrized version of the three-dimensional gen-
eralized stadium billiard. The plane z = 0 is shaded.
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FIG. 2. Typical transmission spectrum for the frequency range
13-13.25 GHz, where the resonances are still well separated.

staircase function and yield dominant peaks in the length
spectrum, i.e., the absolute value of the Fourier transform
of the fluctuating part of the k-dependent density of states,
where k = 27f/c, is the wave number, and ¢, denotes the
speed of light. Such effects of nongeneric periodic orbits
have been found in various types of billiards [4,13,17]. The
experimental length spectrum is shown in the top of Fig. 4.
To obtain an analytical expression for the staircase function
of the nongeneric modes we combine the semiclassi-
cal method of Ref. [12] with the adiabatic method of
Ref. [18]. The quantum adiabatic method [18] has been
applied to the calculation of bouncing ball modes in the
two-dimensional stadium billiard. This method corre-
sponds to a Born-Oppenheimer approximation, where the
fast coordinate is parallel to the classical motion corre-
sponding to the bouncing ball orbits, while the slow vari-
able is transversal to it. Accordingly, we assume that the
modes in the x and y directions are adiabatically decoupled
from the modes in the z direction and quantize the rect-
angle with side lengths [/, and /,. Then, the x and y
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FIG. 3. Fluctuating part of the experimentally obtained stair-
case function (dashed line) compared to the fluctuating part of
the staircase function for the nongeneric modes (full line). We do
not show it for the whole range of the measured resonance
spectrum, because only then both curves are distinguishable.
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component of the wave vector lzng of the nongeneric
modes are given as k,, = wu/l, and k,, = wv/I, for
integers u and v, where, according to the geometry of our
billiard, the z dependence of the lengths /, and [, is

1(z) = ry, ly(Z):vr%_Zz for0=z=<r,
1,(z) = 1y, I(z) =1} — 2% for —r; =2z<0.

Combining this adiabatic method with the approach of
Ref. [12], we express the staircase function Ny, (k) for the
nongeneric modes (ng) as N, (k) = Tr®(k* — k3,), where
the trace is over the wave vector k,, of the nongeneric
modes

Nygll) = Zfd;lfz O — K2, — K, — k). (1)
%%

Note that the integration over z is restricted to the interval
[—ry, o] while the k, integration is unrestricted. The in-
tegers w and v label the modes in the x and y directions,
respectively. Dirichlet (u, » > 0) or von Neumann
(u, v = 0) boundary conditions correspond to the mag-
netic and electric nongeneric modes, respectively.
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FIG. 4. Length spectra from the experimental data (top) com-
pared to (middle) the sum of nongeneric modes [from Eq. (1)]
plus the unstable periodic orbits [trace formula (3) of Balian
and Duplantier], and the unstable periodic orbits (bottom). Dia-
monds mark those peaks that are exclusively assigned to periodic
orbits in the plane z = 0.
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For the electromagnetic cavity under consideration, the
nongeneric magnetic and electric modes decouple. Thus,
the nongeneric contribution to the staircase function is
given by the sum of the quantum mechanical expression
for Dirichlet and von Neumann boundary conditions.
Figure 3 shows that the smooth oscillations of the fluctuat-
ing part of the experimental staircase function are well
described by our expression. Thus, the adiabatic method
yields a very good approximation for the contributions of
the nongeneric modes to the staircase function. In order to
study the local fluctuation properties in the resonance
spectrum, we rescaled the resonances to unit mean spacing
and subtracted the nongeneric contributions from the spec-
trum. For a time-reversal invariant, classically chaotic
system the local fluctuation properties are expected to
coincide with those of random matrices from the
Gaussian orthogonal ensemble (GOE) [19,20]. We, how-
ever, find notable deviations and attribute them to a partial
decoupling between electric and magnetic modes which is
prominent at low frequencies. Indeed, our spectral statis-
tics are in very good agreement with that obtained for
random matrices H from an ensemble, which models two
coupled, chaotic systems [21-23],

ﬁ1=< H \/XAD”’Y). )
JADv;  H,

Here H . and H o are matrices from the GOE with dimen-
sions N, and N,,, respectively. The coupling matrix ele-
ments v;; are Gaussian random variables with zero mean
and unit variance, D is the mean level spacing, and A is the
coupling strength. The random matrix model interpolates
between two uncoupled GOE systems at A = 0 and one
GOE at A = 1. We obtain the best agreement between our
experimental level statistics and that of random matrices
as defined in Eq. (2) when we treat A as a fitting parameter
and set N, (N,,) equal to the number of eigenvalues of the
scalar Helmholtz equation with von Neumann (Dirichlet)
conditions on the boundary of the billiard. This suggests
an interpretation of model (2) in terms of electric and
magnetic modes that are coupled with strength A.
Figure 5 shows the level-spacing distribution and the A,
statistics for a frequency range of 5-10 GHz (A = 0.352)
and 18-18.5 GHz (A = 0.658). The level-spacing distribu-
tions agree well with the GOE and with those of the model
defined by Eq. (2). The A; statistics coincides with that for
the random matrix model (2) but differs from the GOE.
Note, however, that the GOE is approached with increasing
frequency (2-5 GHz: A = 0.07, 11.5-13 GHz: A = 0.546,
15-17 GHz: A = 0.633). We furthermore found that
27A =1'/D, where 1/D is the level density, while I
shows only a weak dependence on frequency for the fre-
quency range from O to 20 GHz. This is similar to a
behavior that was observed in studies of isospin mixing
in nuclei [24]. The partial decoupling of electric and mag-
netic modes at low frequencies was not observed in the
three-dimensional Sinai billiard [13] and seems to be due
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FIG. 5. Left figures: Experimental level-spacing distribu-

tion (histogram) and Aj statistics (diamonds) for the frequency
range 5-10 GHz (A = 0.352) compared to GOE (full line)
and the predictions from the model [see Eq. (2)] (dashed line).
Right figures: Same as left figures but for the frequency range
18-18.5 GHz (A = 0.658).

to the particular geometry of the three-dimensional gener-
alized stadium billiard. Its desymmetrized version (see
Fig. 1) corresponds to two quarter cylinders, which are
rotated by 77/2 with respect to each other. The electric and
the magnetic modes are completely decoupled in each of
these quarter cylinders [10].

Let us finally turn to a semiclassical analysis of the
experimental spectrum. According to [14], the generic
contribution to the fluctuating part of the density of states
is semiclassically given by the periodic orbit sum, i.e., the
trace formula

_ 2cos(¢,)L,/m
pfluc(k) % |det(1 — Mp)|1/2

o

cos(kL, — 5

wy) (3

The factor 2cos¢, stems from the polarization and is
thus due to the vectorial character of the underlying wave
equation. It vanishes for orbits with an odd number of
reflections. The remaining quantities in Eq. (3) are identi-
cal to those appearing in Gutzwiller’s trace formula [5].
We numerically determined the first 381 periodic orbits,
their lengths L, up to about 1.5 m, and their stability
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matrices M, by two different methods. Based on an an-
satz for a symbolic code (see, e.g., Chap. 8 in Ref. [3])
we determined all orbits in the full (not the desymme-
trized) three-dimensional stadium billiard for up to eight
reflections off the boundary. For more reflections the nu-
merical evaluations become too time consuming. The re-
sulting list of periodic orbits was checked for completeness
and enlarged by a numerical search of fixed points in the
Poincaré surface of section (z =0, p, > 0). The latter
method is blind to some whispering gallery modes. As in
the two-dimensional stadium billiard, our device exhibits
infinitely many whispering gallery modes. The shortest of
these orbits propagate along the curved edges of the bil-
liard and have lengths 2r; + 7wr, = 0.843 m, 2r, +
ar; = 0.910 m, and 7(r; + r,) = 1.07 m. There are no
significant peaks associated with these lengths (see Fig. 4,
top). Similar cancellation effects have been observed in the
two-dimensional stadium billiard [25]. For the computa-
tion of the Maslov indices w, we followed [26]. Figure 4
shows a comparison of the experimentally obtained length
spectrum, the length spectrum for the sum of nongeneric
orbits [Eq. (1)] plus unstable periodic orbits [Eq. (3)], and
the length spectrum of the unstable periodic orbits alone.
Diamonds mark those peaks of the nongeneric contribu-
tions that cannot be assigned to bouncing ball modes but to
orbits in the plane z = 0. Evidently, the theoretical recon-
struction describes the experiment rather well. One pecu-
liarity is peaks that appear at about /=~ 0.77 m and
[ = 0.97 m. While we could not find corresponding orbits
inside the billiard, there are two orbits in the boundary
plane y = 0, whose lengths and stability amplitudes ex-
actly match those peaks. Peaks at lengths below [ =
0.28 m, which corresponds to the shortest possible peri-
odic orbit, are the result of the (unavoidable) experimental
inaccuracy. The good agreement between the experimental
and the theoretical length spectra quickly deteriorates be-
yond / = 1.3 m. We recall the exponential proliferation of
long orbits which enter the trace formula (3). It might be
that we have missed some periodic orbits in our numerical
reconstruction of the length spectrum. Note that a consid-
erable fraction of the short periodic orbits have
|2 cosg ,,I = 2. In a semiclassical picture the electric and
magnetic modes decouple locally on such an orbit. This
finding supports our interpretation of the level statistics in
terms of a partial decoupling between electric and mag-
netic modes.

In summary, we have investigated wave chaotic phe-
nomena in a superconducting three-dimensional micro-
wave resonator. Spectral fluctuations on short frequency
scales agree well with those of random matrices from an
ensemble modeling two coupled chaotic systems. We in-
terpret this as a partial decoupling of the electric and
magnetic modes in the low-frequency domain. The length
spectrum can be understood in terms of nongeneric modes
and in terms of unstable periodic orbits of the underlying
classical system.
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