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Local and Occupation Time of a Particle Diffusing in a Random Medium
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We consider a particle moving in a one-dimensional potential which has a symmetric deterministic part
and a quenched random part. We study analytically the probability distributions of the local time (spent by
the particle around its mean value) and the occupation time (spent above its mean value) within an
observation time window of size t. In the absence of quenched randomness, these distributions have three
typical asymptotic behaviors depending on whether the deterministic potential is unstable, stable, or flat.
These asymptotic behaviors are shown to get drastically modified when the random part of the potential is
switched on, leading to the loss of self-averaging and wide sample to sample fluctuations.
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Prob�Tt � T� � 1=� T�t� T� which diverges at the end disordered systems that allows the exact calculation of
How many days, out of a total number of t days, does a
tourist spend in a given place? If the tourist is a Brownian
particle, this local time (per unit volume) nt�~rr� spent by it
in an infinitesimal neighborhood of a point ~rr in space has
been of interest to physicists and mathematicians for de-
cades. If ~RR�t0� denotes the position of the random walker at
time t0, the local time is defined as

nt�~rr� �
Z t

0
�� ~RR�t0� � ~rr�dt0: (1)

Clearly
R
nt�~rr�d~rr � t. The local time is a very useful

quantity with a variety of important applications in fields
ranging from physics to biology. For example, in the
context of polymers in a solution, the local time nt�~rr� is
proportional to the concentration of monomers at ~rr in a
polymer of length t and can be measured via light scatter-
ing experiments. The distribution of local time (LTD) also
plays an important role in the study of diffusion in porous
rocks [1,2] and in bacterial chemotaxis where the phenom-
enon of ‘‘tumbling’’ is quantified by the local time spent by
a bacteria at a point [3].

A related quantity, also of wide interest to both physi-
cists [4] and mathematicians [5], is the occupation time
Tt�D� �

R
D nt�~rr�d~rr spent by the walker in a given region

D of space. Recently the study of the occupation time has
seen a revival due to its newfound applications in the
context of persistence in nonequilibrium statistical physics
[6]. The dynamics in such systems is typically modeled by
a stochastic process x�t� whose statistical properties pro-
vide important information about the history of evolution
in these systems [6]. A quantity that acts as a useful probe
to this history dependence is the occupation time Tt �R
t
0 ��x�t

0��dt0, the time spent by the process on the positive
side within a window of size t [7]. For instance, if x�t�
represents a one-dimensional Brownian motion, the prob-
ability distribution of the occupation time (OTD) is given
by the celebrated ‘‘arcsine’’ law of Lévy [8],������������������p
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points T � 0 and T � t indicating the ‘‘stiffness’’ of the
Brownian motion, i.e., a Brownian path starting at a pos-
itive (negative) point tends to remain positive (negative).
The OTD has been studied in a variety of physical systems.
For example, it has been used to analyze the morpho-
logical dynamics of interfaces [9]. Recently the OTD has
also been used to analyze the experimental data on the
‘‘on-off’’ fluorescence intermittency emitting from colloi-
dal (CdSe) semiconductor quantum dots [10]. Exotic prop-
erties such as a phase transition in the ergodicity of a
process by tuning a parameter have also been exhibited
by the OTD in the diffusion equation [11].

While the LTD and the OTD have been studied exten-
sively for pure systems, they have so far not been studied in
systems with quenched disorder. Given the fact that these
distributions have found a host of interesting applications
in pure systems as described above, it is natural to expect
that they will be equally relevant in disordered systems. In
this Letter, we address these questions for the first time in
disordered systems. The study of these quantities can
provide valuable information in disordered systems. For
example, if one launches a tracer particle in a system with
localized impurities, the particle diffuses in this random
medium, occasionally gets pinned in the region near the
impurities till the thermal fluctuations lift it out of the local
potential well, and then it diffuses again. Since the local
time spent by the particle at a given point in space is related
to the concentration of impurities there, it can be used as a
valuable probe to image the inhomogeneities in a given
sample.

Since nothing is known about the behaviors of the local
and the occupation time in disordered systems, the natural
first step would be to study them in the simplest possible
model of disordered systems. In this Letter we carry out
this important first step in such a candidate model—
namely, the celebrated Sinai model [12]—where a particle
diffuses in a one-dimensional random potential. The Sinai
model has long been considered as the ‘‘Ising’’ model of
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various physical quantities [2,13,14] which can then be
used to provide the ‘‘first guess’’ for the behaviors of these
quantities in more complex realistic disordered systems.
Furthermore, we point out that the scope of our results is
not limited to be just the first guess. In fact, the Sinai model
and its variants have found numerous applications in vari-
ous physical processes [2,13] including the diffusion of
electrons in disordered medium, glassy activated dynamics
of dislocations in solids, dynamics of random field mag-
nets, dynamics near the helix-coil transitions in hetero-
polymers, and more recently the dynamics of denaturation
of a single DNA molecule under external force [15].
Therefore our results are expected to be directly relevant
for such processes. In particular, motivated by the appli-
cation in the dynamics of denaturation process [15], we
study here a more general version of the Sinai model,
where in addition to a random potential, there is also an
external deterministic potential whose derivative repre-
sents the deterministic force on the particle. Despite the
simplicity of the model the LTD and the OTD display a
variety of rich and interesting behaviors as shown below.

We start with the Langevin equation of motion of an
overdamped particle

dx
dt

� F�x� � ��t�; (2)

where ��t� is a thermal Gaussian white noise with zero
mean and a correlator h��t���t0�i � 2kBT��t� t0�. For
simplicity we set kBT � 1. The force F�x� � �dU=dx is
derived from a potential which has a deterministic and a
random part, U�x� � Ud�x� �Ur�x�. In the continuous
version of the Sinai model we choose the random potential
Ur�x� �

����
�

p R
x
0 ��x

0�dx0 to be a Brownian motion in space
where ��x� is a quenched Gaussian noise with zero mean
and a correlator h��x���x0�i � ��x� x0�. The goal is to first
compute the probability distribution of the local time,
nt�a� �

R
t
0 ��x�t

0� � a�dt0 and that of the occupation
time Tt�a� �

R
t
0 ��x�t

0� � a�dt0 corresponding to level a
for a given sample of quenched disorder and then obtain
the disorder averaged distributions. For simplicity, we will
consider Ud�x� to be symmetric so that the mean position
of the particle is at zero and restrict ourselves to study the
distributions of nt � nt�0� and Tt � Tt�0� corresponding to
the natural choice of the level a � 0. However, our results
are easily generalizable to more general potentials and to
arbitrary levels a.

It turns out that the generic asymptotic scaling behaviors
of the LTD and the OTD, at a qualitative level, depend on
whether the deterministic potential Ud�x� is unstable
[Ud�x� ! �1 as x ! �1], stable [Ud�x� ! 1 as x !
�1] or flat [Ud�x� � 0] . Quantitatively, however, the LTD
and the OTD do depend on the details of the potential
Ud�x�. To keep the discussion simple, we present explicit
results here for the case when Ud�x� � ��jxj, even
though our techniques can be extended to other potentials
as well. Thus we will consider Eq. (2) with the force
F�x� � �sign�x� �

����
�

p
��x�. For � > 0, the deterministic
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force is repulsive from the origin and for �< 0, the force
is attractive. For � � 0, Eq. (2) reduces exactly to the Sinai
model.

It is useful to start with a generalized variable �t �R
x
0 V�x�t

0��dt0 with an arbitrary functional V�x�t0�� which
reduces to the local time nt and the occupation time Tt
when V�x� � ��x� and V�x� � ��x�, respectively. Let
Px�T; t� be the probability that �t � T given that the
particle starts at x�0� � x. The Laplace transform
Qp�x; t� �

R
1
0 e�pTPx�T; t�dT plays a crucial role in

our subsequent analysis. By definition Qp�x; t� �

he�p
R

t

0
V�x�t0��dt0 ix where h ix denotes the average over all

histories of the particle up to time t starting at x at t � 0.
Using the evolution Eq. (2) it is straightforward to see that
Qp�x; t� satisfies, for arbitrary F�x�, the backward Fokker-
Planck equation

@Qp

@t
�

1

2

@2Qp

@x2
� F�x�

@Qp

@x
� pV�x�Qp; (3)

with the initial condition Qp�x; 0� � 1. After a fur-
ther Laplace transform, now with respect to t, u�x� �R
1
0 e�#tQp�x; t�dt satisfies the equation

1

2
u00 � F�x�u0 � �#� pV�x��u � �1; (4)

where u0�x� � du=dx and we have suppressed the # and p
dependence of u�x� for notational convenience. So far the
discussion is quite general. We now consider the local and
the occupation time separately.

Local time.—In this case V�x� � ��x�. We need to solve
Eq. (4) separately for x > 0 and x < 0 and then match the
solutions at x � 0. We write u��x� � 1=#� A�y��x�
where y��x� satisfy the homogeneous equations

1

2
y00� � F�x�y0� � #y� � 0; (5)

respectively in the regions x > 0 and x < 0 with the
boundary conditions y��x ! 1� � 0 and y��x ! �1� �
0. The constants A� are determined from the matching
conditions, u��0� � u��0� � u�0� and u0��0� � u0��0� �
2pu�0�. Eliminating the constants, we get u�0� �
&�#�=#�p� &�#��, where &�#� � �z��0� � z��0��=2
and z��x� � y0��x�=y��x�. For simplicity, we will restrict
ourselves only to P0�nt � T; t� corresponding to the natu-
ral choice of the starting point x�0� � 0, though our meth-
ods can be easily generalized to arbitrary initial positions.
Since &�#� is independent of p, one can easily invert the
Laplace transform u�0� with respect to p to get

G�#� �
Z 1

0
e�#tP0�nt � T; t�dt �

&�#�
#

e�&�#�T; (6)

a general result valid for arbitrary F�x�. To proceed more
we choose F�x� � �sign�x� �

����
�

p
��x� and consider the

implications of Eq. (6) for the pure case � � 0 first for
arbitrary �.
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Solving Eqs. (5) for F�x� � �sign�x� we find y��x� �
y��0�e

�)x with ) � ��
�������������������
�2 � 2#

p
. This gives &�#� �

) � ��
�������������������
�2 � 2#

p
. By analyzing this Laplace transform

one finds that there are three different asymptotic (large t)
behaviors of P0�T; t� depending on whether the potential is
unstable (� > 0), stable (�< 0), or flat (� � 0). These
asymptotic behaviors for the particular potential chosen
here (Ud�x� � �jxj) can be shown to be typical for generic
potentials.

Unstable potential (� > 0).—In this case, the LTD
approaches a steady state in the large window size t ! 1
limit, P0�T� � 2�e�2�T obtained by taking # ! 0 limit in
Eq. (6). Physically it indicates that for repulsive force the
particle eventually goes to either 1 or �1 and occasion-
ally hits the origin according to a Poisson process. This
asymptotic exponential distribution P0�T� � &�0�e�&�0�T

is indeed universal (up to a rescaling factor of time) for
any unstable potential.

Stable potential (�< 0).—For generic stable poten-
tials the system approaches a stationary state in the large
t limit and the stationary probability distribution p�x� for
the position of the particle is given by the Gibbs mea-
sure, p�x� � e�2Ud�x�=Z, where Z �

R
1
�1 e�2Ud�x�dx is

the partition function. Hence as t ! 1, simple ergodic-
ity arguments indicate that the local time nt !R
t
0h��x�t

0��idt0 ! p�0�t, i.e., the LTD is simply
P0�nt � T; t� � ��T � p�0�t�, a result that can also be
proved rigorously [16]. As an example, for Ud�x� �
��jxj considered in this paper, one finds p�0� � j�j and
hence P0�T; t� � ��T � j�jt� as t ! 1.

Flat potential (� � 0).—In this case, one finds by
inverting the Laplace tranform in Eq. (6) that the LTD is
Gaussian for all T and t, P0�T; t� �

�����������
2=�t

p
e�T2=2t.

These behaviors for the pure system (� � 0) get drasti-
cally modified when the random potential is switched on
(� > 0). Equation (6) still remains valid for each realiza-
tion of F�x�. Our aim is to compute the disorder averaged
LTD P0�nt � T; t�. From Eq. (6), one needs to know the
distribution of &�#� � �z��0� � z��0��=2 which is now a
random variable since F�x� is random. It turns out the
distribution of &�#� can be computed exactly by adopting
techniques that have appeared before in the Sinai model in
other contexts [13,17,18]. We defer the technical details for
a future publication [16] and present only the final results
here. One gets exp��&�#�T� � q2�T� with

q�T� � �1� �T���=2�
K�=�

� �����������������
2#�1��T�

p

�

�

K�=��
�����
2#

p

� �
; (7)

where K-�x� is the modified Bessel function of order -
[19]. Averaging Eq. (6) over disorder we finally get the
exact formula

Z 1

0
P0�T; t�e�#tdt � �

1

#
d
dT

�q2�T��; (8)
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where q�T� is given by Eq. (7). The asymptotic behaviors
can be deduced by analyzing Eq. (8).

� > 0: In this case, we find that as t ! 1, P0�T; t� tends
to a steady state distribution, P0�T� � 2��1�
�T��2�=��1 for all T � 0. Thus the disorder averaged
LTD has a broad power law distribution even though for
each sample the LTD has a narrow exponential distribu-
tion. This indicates wide sample to sample fluctuations and
lack of self-averaging.

�< 0: In this case, for each sample of the disorder, the
LTD tends to the delta function P0�T; t� ! ��T � p�0�t� as
discussed before. However, the Gibbs measure p�0� varies
from sample to sample. On averaging over disorder (or
equivalently the peak positions), one finds a broad distri-
bution for P0�T; t�. In the scaling limit t ! 1, nt � T !

1 but keeping the ratio T=t fixed, we find that P0�T; t� !
1
t f�T=t� where the scaling function can be computed ex-
actly by analyzing Eq. (8),

f�y� �
� ����

�
p

��2�3��-�1�=2�2�-�

�
y3�-�1�=2e�y=�W-;-�2y=��;

(9)

with - � j�j=� and W-;-�x� is the Whittaker function
[19]. The scaling function increases as f�y� � y-�1 for
small y and eventually decays for large y as f�y��
y�4-�3�=2e�2y=�. Once again the disorder modifies the be-
havior of the LTD rather drastically.

� � 0 (Sinai model): In this case we find that for
large t, P0�nt � T; t� ! 1

t log2t fS�T=t� where fS�y� �
2e�y=�K0�y=��=y. However this scaling breaks down for
very small y when y � �.

We now turn to the OTD, R0�T; t� � Prob�Tt � T; t�
given that the particle starts at x � 0 at t � 0. In
this case, the double Laplace transform up�x� �R
1
0 dte�#t

R
t
0 e

�pTRx�T; t�dT satisfies Eq. (4) with V�x� �
��x�. Since the rest of the calculations are very similar
to the LTD case, we just present the final results omitting
the details.

Unstable potential.—Consider the pure case (� � 0�
first. Since the deterministic potential is symmetric, one
has R0�T; t� � R0�t� T; t�, i.e., the OTD is symmetric
around its mean value t=2. In the limit of a large win-
dow size t ! 1, it turns out that the part of the OTD to the
left of the midpoint T � t=2 approaches a steady (t in-
dependent) distribution RL�T� with the normalizationR
1
0 RL�T�dT � 1=2. The right half of the OTD, which

carries an equal total weight 1=2 is pushed to 1 since
the midpoint t=2 itself goes to 1. This conclusion is
valid for any symmetric deterministic potential. For
the case F�x� � �sign�x�, we get explicitly, RL�T� �
�2e�u2�1� 3

����
�

p
ue9u

2
erfc�3u��=

����
�

p
u where u � �

���������
T=2

p
and erfc�x� is the complementary error function. Thus
RL�T� � �

������������
2=�T

p
for small T and decays exponentially

for large T, RL�T� � T�3=2e��2T=2. When the disorder is
switched on (� > 0), this asymptotic behavior for the pure
060601-3
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case does not change qualitatively. Once again the left part
of the disordered averaged OTD tends to a t independent
form RL�T�. In fact, the small T behavior of RL�T� �
�

������������
2=�T

p
remains the same as in the pure case. However,

for large T, while the OTD still decays exponentially
RL�T� � e�bT , the decay coefficient b turns out to be
different from the pure case [16].

Stable potential.—As in the case of the LTD we find
that for the pure case, for generic stable potential Ud�x�, the
OTD approaches a delta function in the t ! 1 limit,
R0�Tt � T; t� ! ��T � Z�

Z t� where Z is the equilibrium
partition function and Z� �

R
1
0 e�2Ud�x�dx is the restricted

partition function. This result again follows from simple
ergodicity arguments. In the presence of disorder (� > 0),
this asymptotic behavior gets modified as in the case of
LTD and we find R0�T; t� �

1
t fo�T=t� in the scaling limit.

The exact calculation of the scaling function fo�T=t� is
nontrivial but the final answer turns out to be a deceptively
simple Beta law,

fo�y� �
1

B�-; -�
�y�1� y��-�1; 0 � y � 1; (10)

where - � j�j=� and B�-; -� is the standard Beta function
[19]. If one tunes the parameter - by either varying � or
the disorder strength �, this OTD exhibits an interesting
phase transition in the ergodicity of the particle position at
-c � 1. For - < -c, the distribution in Eq. (10) is concave
with a minimum at y � 1=2 and diverges at the two ends
y � 0; 1. This means that paths with a small number of
zero crossings (such that T is close to either 0 or t� carry
more weight than the paths that cross many times (for
which T is close to t=2), i.e., the particle tends to stay on
one side of the origin as in the case of a Brownian motion.
Exactly the opposite situation occurs for - > -c where
fo�y� is maximum at its mean value 1=2 indicating largest
weights for paths that spend equal times on both sides of
x � 0. It is interesting to notice that similar types of Beta
laws also arise in the study of certain perturbed Brownian
motion [20].

Flat potential (� � 0�.—For the pure case (� � 0), our
method reproduces the ‘‘arcsine’’ law for the OTD of an
ordinary Brownian motion, R0�T; t� � 1=�

������������������
T�t� T�

p
. In

the presence of disorder (� > 0), i.e., for the the Sinai
model, we find that the left part of the OTD for 0 � T �
t=2 has the large t behavior, RL

0 �T; t� �
1

logt R�T�. The right
half of the OTD for t=2 � T � t is just the symmetric
reflection of the left part. The t independent function
R�T� has a complicated form but with simple limiting
behaviors, R�T� � �

������������
2=�T

p
as T ! 0 and R�T� � 1=2T

for large T, consistent with the normalization conditionRt=2
0 RL

0 �T; t�dT � 1=2.
In summary, we have, for the first time, addressed the

question of the LTD and the OTD in disordered systems
and have obtained exact asymptotic results in the simplest
model of disordered systems namely, for a particle moving
060601-4
in a random potential which has a deterministic part as
well. Our exact results are consistent with the general
notion that ‘‘disorder broadens distributions’’ of physical
quantities. Recently several asymptotic exact results for
other quantities in the Sinai type models were derived
using a real space renormalization group (RG) treatment
[14]. Reproducing the exact results presented here either
via the RG method or by the replica method and extending
our results to higher dimensions and more realistic disor-
dered systems remain as challenging open problems.

We thank M. Yor for useful discussions.
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