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Conservative Quantum Computing
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The Wigner-Araki-Yanase theorem shows that conservation laws limit the accuracy of measurement.
Here, we generalize the argument to show that conservation laws limit the accuracy of quantum logic
operations. A rigorous lower bound is obtained of the error probability of any physical realization of the
controlled-NOT gate under the constraint that the computational basis is represented by a component of
spin, and that physical implementations obey the angular momentum conservation law. The lower bound
is shown to be inversely proportional to the number of ancilla qubits or the strength of the external control
field.
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defined as the total number of qubits in the computational
basis and the ancilla. It is shown that any physically real-

A simple proof runs as follows. Assume that Eq. (3) holds.
If a � b, we have
Since the discovery of Shor’s algorithm [1], physical
realization of quantum computers is one of the major topics
in physics. One of the formidable obstacles to the realiza-
tion of quantum computers is the decoherence induced by
the environment. The theory of quantum error correction
and the theory of fault-tolerant quantum computing have
been developed to overcome this difficulty [2,3]. One of
the main achievements of this field is the threshold theo-
rem: Provided the noise in individual quantum gates is
below a certain threshold it is possible to efficiently per-
form arbitrarily large quantum computing. However, the
threshold is rather demanding and the problem turns to
whether there is any fundamental limit for implementing
quantum gates. Recently, Lloyd [4] and Ng [5] have dis-
cussed how fundamental constants provide limits on speed
and memory of quantum computers. Here, I will propose
another approach based on conservation laws.

If we consider the ultimate performance of computing
allowed by the laws of physics, elementary quantum gates
should be isolated and small, so that the corresponding
unitary operators should satisfy fundamental symmetries,
or conservation laws. From this point of view, it is likely
that the degree of conflict with a conservation law depends
on the nature of its logic to be performed and that the
imperfection can be reduced by increasing the size of
implementation. However, no serious investigation has
ever taken place. In this letter we model qubits as spin-1/2
objects and investigate the quantum limit induced by the
angular momentum conservation law. We show that,
although the SWAP gate has no conflict with the conserva-
tion law, the controlled-NOT gate, which is one of the
universal quantum logic gates, cannot be implemented by
any 2-qubit rotationally invariant unitary operation within
error probability 1=16. Thus, to obtain more accuracy, we
need to blow up the unitary operation to an ancilla system.
Then, the size of an implementation of the quantum gate is
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izable unitary operator with size less than n qubits cannot
implement the controlled-NOT gate within the error proba-
bility 1=4n2. An analogous limit for bosonic ancillae will
also be obtained by defining the size of the ancilla as 2
times the square root of the average number of photons,
and thus the lower bound is inversely proportional to the
average number of photons. It is also shown that, in any set
of universal gates, for any size limit s there is at least one
gate which cannot be implemented within the error proba-
bility 1=ks2 for some constant k. Thus, we cannot circum-
vent this limitation by a clever choice of the set of universal
gates.

Let UCN be a controlled-NOT gate on a 2-qubit system
C� T. Let Xi, Yi, and Zi be the Pauli operators of qubit C
for i � 1 or qubit T for i � 2 defined by Xi � j1i h0j �
j0i h1j, Yi � ij1i h0j � ij0i h1j, and Zi � j0i h0j � j1i h1j
with the computational basis fj0i; j1ig. On the computa-
tional basis, UCN acts as UCNja; bi � ja; b 	 ai for a; b �
0; 1, where 	 denotes the addition modulo 2. Thus, in
particular, we have

UCNja; 0i � ja; ai (1)

for a � 0; 1. The above relation shows that the unitary
operator UCN serves as an interaction between the ‘‘ob-
ject’’ C and the ‘‘probe’’ T for a measurement of Z1

satisfying the projection postulate. Thus, by the Wigner-
Araki-Yanase theorem [6,7], if there are additive conserved
quantities not commuting with Z1, the unitary operator
UCN cannot be implemented. To be precise, let L1 and L2

be a pair of observables of C and T, respectively, such that


Z1; L1� � 0 : (2)

Then, the controlled-NOT gate UCN cannot satisfy the con-
servation law [8]


UCN; L1 � L2� � 0 : (3)
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hajL1jbi � ha; 0jL1 � L2jb; 0i

� ha; 0jUy
CN
L1 � L2�UCNjb; 0i

� ha; ajL1 � L2jb; bi � 0 :

Thus, L1 is diagonal in the computational basis of C.
Therefore, if L1 does not commute with Z1, then UCN

cannot satisfy the conservation law (3). In particular,
UCN cannot be implemented in the presence of the angular
momentum conservation law.

The above impossibility of implementation depends on
the logic. Despite the limitation on the controlled-NOT gate,
the SWAP gate USWAP, defined by USWAPja; bi � jb; ai for
a; b � 0; 1, can be implemented precisely under the angu-
lar momentum conservation law. In fact, the SWAP gate can
be precisely implemented as [9]

USWAP � exp
�i�
4


�1� X1X2 � Y1Y2 � Z1Z2� : (4)

In order to construct a physical implementation of UCN,
the above consideration suggests the need for blowing up
the unitary operation to a larger system including
additional qubits. Let � � 
U; j�i� be a physical imple-
mentation of UCN defined by a unitary operator U on the
system C� T�A, where A is a quantum system called
the ancilla, and a state vector j�i of the ancilla, in which
the ancilla is prepared at the time at which U is turned
on. The implementation � � 
U; j�i� defines a trace-
preserving quantum operation � by

E�
�� � TrA
U
� � j�i h�j�Uy� (5)

for any density operator � of the system C� T, where TrA
stands for the partial trace over the system A. On the other
hand, the gate UCN defines the trace-preserving quantum
operation adUCN by

adUCN
�� � UCN�U
y
CN (6)

for any density operator � of the system C� T.
How successful the implementation 
U; j�i� has been is

most appropriately measured by the completely bounded
(CB) distance [10] between two operations E� and adUCN

defined by

DCB
E�; UCN� � sup
n;�
D
E� � idn
��; adUCN � idn
��� ;

(7)

where n runs over positive integers, idn is the identity
operation on an n-level system Sn, � runs over density
operators of the system C� T� Sn, and D
�1; �2� stands
for the trace distance (Ref. [2]}, p. 403) of two states �1

and �2. Since the trace distance of the above two states can
be interpreted as an achievable upper bound on the so-
called total variation distance of two probability distri-
butions arising from measurements performed on the two
output states of the corresponding gates (Ref. [2], p. 405),
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we interpretDCB
E�;UCN� as the worst error probability of
operation E� in simulating the gate UCN on any input state
of any circuit including those two gates. We shall call
DCB
E�; UCN� the gate error probability of the implemen-
tation � of the gate UCN.

Another measure, which is more tractable in computa-
tions, is the gate fidelity (Ref. [2], p. 418) defined by

F
E�; UCN� � minj iF
 � ; (8)

where j i varies over all state vectors of C� T, and F
 �
is the fidelity of two states UCNj i and E�
j i h j� given
by

F
 � � h jUy
CNE�
j i h j�UCNj i1=2: (9)

By the relation (Ref. [2], p. 416)

1� F
E�; UCN�
2 � DCB
E�;UCN� ; (10)

any lower bound of 1� F
E�; UCN�
2 gives a lower bound

of the gate error probability. The operator U and the
operation E� is generally described by the following ac-
tions on computational basis states:

Uja; bi j�i �
X1

c;d�0

jc; di jEabcdi ; (11)

E�
ja; bi ha; bj� �
X1

i;j;k;l�0

ji; ji hEa;bk;l jE
a;b
i;j i hk; lj (12)

for a; b � 0; 1, where jEabcdi is not necessarily normalized.
It follows that the fidelity is given by

F
a; b� � kjEa;ba;b	aik : (13)

Now, we assume that there are additive conserved quan-
tities L1, L2, and L3 of systems C, T, and A, respectively,
so that the unitary operator U should satisfy the conserva-
tion law


U;L1 � L2 � L3� � 0 : (14)

Since computational qubits, C and T, should have the same
physical structure, we naturally assume kL1k � kL2k for
their operator norms.

Our problem is to find a good lower bound of the gate
error probability (7) under the conservation law (14). In
order to derive the lower bound from uncertainty relations,
we introduce the deviation operatorsDij of the system C�
T�A for i; j � 1; 2 defined by

Dij � Z0
i � Zj ; (15)

where we write A0 � UyAU for any operator A. The root-
mean-square deviation �ij
 � on arbitrary input state j i of
C is defined as the root-mean-square of the deviation
operator Dij in state j ; 0; �i � j i j0i j�i, i.e.,

�ij
 � � hD2
iji

1=2; (16)
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where h� � �i abbreviates h ; 0; �j � � � j ; 0; �i. For any
observable A, we shall denote by �A the standard deviation
of A defined by �A � h
A� hAi�2i1=2. Then, we easily see

�Dij � �ij
 � (17)

for i; j � 1; 2. In the case where U � UCN, we have
D11 � 0, D12 � Z1 � Z2, D21 � Z1
Z2 � I�, and D22 �

Z1 � I�Z2, so that �11
 � � �21
 � � 0 for any state j i
of C. Thus, the relation �11
 �2 � �21
 �2 > 0 implies
U � UCN. Hence, the quantity �11
 �

2 � �21
 �
2 mea-

sures a degree of imperfection.
Now, we shall evaluate �11
 � and �21
 � for a general

implementation, � � 
U; j�i�, under the conservation law
(14). From the conservation law (14) and the relations

Z1; L2� � 
Z1; L3� � 0, we have


Z1; L1� � 
Z1; L
0
1� � 
Z1; L

0
2� � 
Z1; L

0
3� : (18)

From the definition of deviation operators, Eq. (15), we
have


Z1; L
0
1� � 
L0

1; D21� and 
Z1; L
0
2� � 
L0

2; D11� ; (19a)


Z1; L0
3� � 
L0

3; D11� � 
L0
3; D21� : (19b)

Thus, we have the following noise commutation relations


Z1; L1� � 
L0
1; D21� � 
L0

2; D11� � 
L0
3; D11� ; (20)


Z1; L1� � 
L0
1; D21� � 
L0

2; D11� � 
L0
3; D21� : (21)

By taking the modulus of the expectations of both sides of
Eq. (20) and applying the triangular inequality, we have

jh
Z1; L1�ij � jh
L0
1; D21�ij � jh
L0

2; D11�ij

� jh
L0
3; D21�ij : (22)

By the uncertainty relation [13] and Eq. (17), we have

jh
L0
k; Dij�ij � 2�Dij�L

0
k � 2�ij
 ��L

0
k : (23)

Thus, we obtain the following consequence of the first
noise commutation relation, Eq. (20):

jh
Z1; L1�ij � 2�21
 ��L
0
1 � 2�11
 ��L

0
2

� 2�11
 ��L0
3 : (24)

Similarly, from the second noise commutation relation,
Eq. (21), we obtain the following relation:

jh
Z1; L1�ij � 2�21
 ��L
0
1 � 2�11
 ��L

0
2

� 2�21
 ��L0
3 : (25)

Summing up both inequalities and using the relations
�L0

1;�L
0
2 � kL1k � kL2k, we have

jh
Z1; L1�ij � 
�11
 � � �21
 �� 
2kL1k ��L0
3� :

By the inequality 
x� y�2=2 � x2 � y2, we have the lower
bound of the imperfection
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jh
Z1; L1�ij
2

2
2kL1k � �L0
3�

2 � �11
 �2 � �21
 �2: (26)

Let us now consider the computational basis defined by
the spin component of the z direction and the angular
momentum conservation law for the x direction. Thus,
we assume Li � Xi for i � 1; 2, so that

kL1k � kL2k � 1 ; (27)

and that L3 is considered as the x component of the total
angular momentum divided by �h=2 of the ancilla system A.
In order to maximize the bound in Eq. (26), suppose that
the input state j i is the spin state of the y direction, i.e.,
j i � 1��

2
p 
j0i � j1i�. Then, by straightforward calcula-

tions, we have

�11
 �
2 � 2kjE10

00ik
2 � 2kjE10

01ik
2 � 2kjE00

10ik
2

� 2kjE00
11ik

2; (28)

�21
 �
2 � 2kjE10

00ik
2 � 2kjE00

01ik
2 � 2kjE10

10ik
2

� 2kjE00
11ik

2: (29)

Since
P

1
c;d�0 kjE

ab
cdik

2 � 1 for a; b � 0; 1, from Eq. (13)
we have

�11
 �2 � �21
 �2 � 4
1� F
00�2� � 4
1� F
10�2�

� 8
1� F
E�; UCN�
2� :

(30)

Since 
Z1; L1� � 
Z1; X1� � 2iY1, we have

jh
Z1; L1�ij � 2 : (31)

Thus, from Eqs. (26), (27), (30), and (31), we have the
following fundamental lower bound of the gate error
probability:

1

4
2� �L0
3�

2 � 1� F
E�;UCN�
2 � DCB
E�; UCN� :

(32)

In the following, we shall interpret the above relation in
terms of the notion of the size of implementations for
fermionic and bosonic ancillae separately.

We now assume that the ancilla A comprises qubits.
Then, the size s
�� of the implementation � is defined to be
the total number n of the qubits included in C� T�A.
Then, we have

�L0
3 � kL3k � n� 2 : (33)

Thus, we have the following lower bound of the gate error
probability:

1

4s
��2
� 1� F
E�; UCN�

2 � DCB
E�; UCN� ; (34)

with s
�� � n. Therefore, it has been proven that, if the
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computational basis is represented by the z component of
spin, any implementation with size n which preserves the x
component of angular momentum cannot simulate the
controlled-NOT gate within the error probability 1=4n2.
In particular, any implementation on C� T cannot simu-
late UCN within the error probability 1=16.

In current proposals [2,3], the external electromagnetic
field prepared by the laser beam is considered to be a
feasible candidate for the ancilla A to be coupled with
the computational qubits C� T via the dipole interaction.
In this case, an analogous limit for bosonic ancillae is
obtained by defining the size of the ancilla as 2 times the
square root of the average number of photons, and thus the
lower boud is inversely proportional to the average number
of photons. In fact, the ancilla state j�i is considered to be a
coherent state, for which we have 
�N�2 � h�jNj�i �
hNi, where N is the number operator. We assume that the
beam propagates toward the x direction with right-hand
circular polarization. Then, we have L3 � 2N, and hence

�L0
3 � 2�N0 � 2hN0i1=2 � 2
hNi � 2�1=2: (35)

Thus, Eq. (34) holds with defining the size of implementa-
tion � by s
�� � 2hNi1=2 appropriately for the strong field,
and hence Eq. (34) turns to be the relation

1

16hNi
� 1� F
E�; UCN�

2 � DCB
E�; UCN� : (36)

Formula (34) holds, therefore, appropriately for both
fermionic and bosonic ancillae. In the most general case,
Eq. (34) holds with s
�� � 2� �L0

3 dependent on the
ancilla state, or with s
�� � 2� kL3k independent of the
ancilla state.

The above limit on implementations of elementary gates
cannot be circumvented by any choices of the set of
universal gates. In fact, we can generally prove that, in
any set of universal gates, for any size limit s there is at
least one gate which cannot be implemented within the
error probability 1=ks2 for some constant k. A proof runs as
follows. Suppose that UCN can be constructed from m
elementary gates. Let UCN � Um � � �U1 and E� �
Em � � � E1, where Ei is the operation of the best implemen-
tation of gate Ui with size s. Then, s
�� � ms, and hence
from the chain property of CB distance [2,12], we have

1

4
ms�2
� DCB
E�;UCN� �

Xm

i�1

DCB
Ei; Ui� : (37)

Thus, one of Ui must satisfy 1=4m3s2 � DCB
Ei; Ui�.
By modifying the model of a measurement due to Araki

and Yanase [7], it can be shown that there is a physical
implementation � of UCN with any size n satisfying the
angular momentum conservation law such that 1�
F
E�; UCN�

2 � O
1=n�. Thus, it is really possible to
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make the error probability small by making the ancilla
large. The detailed construction will be discussed
elsewhere.

Although it is difficult to envisage what the hardware of
the quantum computer will be like, in order to realize a
mobile quantum computer a fermionic ancilla appears to
be plausible. The current theory demands the ‘‘threshold’’
error probability 10�5–10�6 for each quantum gate
(Ref. [2], p. 482). Thus, a single controlled-NOT gate
would not be in reality a unitary operation on a 2-qubit
system but would be a unitary operation on a system with
at least 100 qubits, as long as the computational basis is
chosen as a spin component. The present investigation
suggests that the current choice of the computational
basis should be modified so that the computational basis
commutes with the conserved quantity. Since the additive
conserved quantity has degenerate spectrum on the mul-
tiple qubits, we may find such a computational basis com-
prised of orthogonal entangled states over a multiple-qubit
system. Accordingly, the theory of fault-tolerant quantum
computing based on single-qubit errors should be modified
to incorporate this choice of the computational basis.
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